a: \(P\left(x\right)=2x^2-3x^3+x^2+3x^3-x-1-3x\)
\(=3x^2-4x-1\)
\(P\left(x\right)=-3x^2-4x-2\)
b: \(F\left(x\right)=P\left(x\right)+Q\left(x\right)=-8x-3\)
c: \(G\left(x\right)=P\left(x\right)-Q\left(x\right)=3x^2-4x-1+3x^2+4x+2=6x^2+1\)
a: \(P\left(x\right)=2x^2-3x^3+x^2+3x^3-x-1-3x\)
\(=3x^2-4x-1\)
\(P\left(x\right)=-3x^2-4x-2\)
b: \(F\left(x\right)=P\left(x\right)+Q\left(x\right)=-8x-3\)
c: \(G\left(x\right)=P\left(x\right)-Q\left(x\right)=3x^2-4x-1+3x^2+4x+2=6x^2+1\)
Cho hai đa thức P(x)=\(2x^2-3x^3+x^2+3x^3-x-1-3x\); Q(x)=\(-3x^2+2x^3-x-2x^3-3x-2\) . a) Thu gọc và sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến. b) tính f(x)= P(x) - Q(x).Tính g(x)= P(x) - Q(x), tìm x để đa thức g(x) - (6x+1)=0
cho hai đa thức:
f(x)=-x+2x^2-1/2+3x^5+5 và g(x)=3-x^5+1/3x^3+3x-2x^5-2x^2-1/3x^3
a)thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm dần của biến
b) Tính f(x)+g(x)
c) Tìm ngiệm của đa thức
h(x)=f(x)+g(x)
Cho 2 đa thức : f [ x ] = x^3 - 5x^2 + 3x + 2 + 3x^2 . g( x ) = -x^3 - x^2 + 6x - 2x^2 - 6x + 2 . a, Thu gọn và sắp xếp các hạng tử của đa thức f ( x ) , g ( x ) theo lũy thừa giảm dần của biến . b, tính f ( x ) + g( x ) và f ( x) - g ( x )
Bài 4. Cho hai đa thức: P(x) = (4x + 1 - x ^ 2 + 2x ^ 3) - (x ^ 4 + 3x - x ^ 3 - 2x ^ 2 - 5) Q(x) = 3x ^ 4 + 2x ^ 5 - 3x - 5x ^ 4 - x ^ 5 + x + 2x ^ 5 - 1 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm, dần của biển. b) Tính P(x) + 20(x) 3P(x) + 0(x)
Bài 1:Cho đa thức P(x)=3x^4+2x^2-3x^4-2x^2+2x-5 a)Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến b)Tính P(-1);P(3) Bài 2:Cho 2 đa thức f(x)=x^2-6x+4 và g(x)=x^2-4x-2 a)Tính f(x)+g(x) b)Tính f(x)-g(x) c)Tìm x sao cho h(x)=f(x)-g(x)=0
cho hai đa thức: f(x)= 5+3x2-x-2x2 và g(x)=3x+3-x-x2
a) thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến
b) tính h(x)=f(x)+g(x)
Cho hai đa thức: \(f\left(x\right)=-x+2x^2-\frac{1}{2}+3x^5+5\) và
\(g\left(x\right)=3-x^5+\frac{1}{3}x^3+3x-2x^5-2x^2-\frac{1}{3}x^3\).
a) Thu gọn và sắp xếp hai đa thức f(x) và g(x) theo lũy thừa giảm dần của biến
b) Tính f(x)+g(x)
c) Tìm nghiệm của đa thức h(x)=f(x)+g(x)
Bài 3. Cho hai đa thức P(x) = 2x3 – 2x + x2 – x 3 + 3x + 2 Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1 a) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến b) Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x) c) Chứng tỏ đa thức M(x) không có nghiệm
Bài 1 (2,5 điểm): Cho các đa thức P(x) = - x ^ 3 + 3x ^ 2 + x - 1 + 2x ^ 3 - x ^ 2 Q(x) = - 3x ^ 3 - x ^ 2 + 2x ^ 3 + 3x + 3 - 4x a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm của biến b) Tìm đa thức H(x) = P(x) + Q(x) c) Tính H(- 1) và H(1) d) Chứng tỏ rằng đa thức cH(x) không có nghiệm.
Bài 1. Cho hai đa thức
f (x)= -2x^4-3x^3+4x^4-x^2+5x+3x^2+5x^3+6 g (x)= x^4-x^3+x^2-5x-x^3-2x^2+3
a) Thu gọn và sắp xếp đa thức f (x) và g (x) theo lũy thừa giảm dần của biến; cho biết bậc, hệ
số cao nhất, hệ số tự do của mỗi đa thức.
b) Tìm các đa thức h (x) và k (x), biết
h (x)= f (x)+ g (x) k (x)= f (x)-2g (x)-4x^2
c) Tính giá trị của đa thức f (x) khi x là số nguyên, thỏa mãn k (x)= 0.
d) Tìm giá trị nhỏ nhất của đa thức h (x) CHỈ CẦN LÀM CÂU c,d THÔI, a,b ko cần phải làm
Bài 2. (2.0 điểm)
a) Tìm tất cả các giá trị nguyên của biến x để biểu thức sau nhận
giá trị nguyên M= 9x+5/3x-1