Cho F(x) là một nguyên hàm của hàm số f(x)= 1 2 x - 1 . Biết F(1)=2. Giá trị của F (2) là

![]()

![]()
Biết rằng x e x là một nguyên hàm của hàm số f(-x) trên khoảng - ∞ , + ∞ . Gọi F(x) là một nguyên hàm của f ' x e x thỏa mãn F(0) =1, giá trị của F(-1) bằng:
A. 7 2
B. 5 - e 2
C. 7 - e 2
D. 5 2
Biết F ( x ) = a ln | x - 1 | + b ln | x - 2 | ( a , b ∈ Z ) là một nguyên hàm của hàm số f ( x ) = x + 1 ( x - 1 ) ( x - 2 ) . Giá trị của biểu thức b-a bằng
![]()
![]()
![]()
![]()
Cho hàm số f(x) có đạo hàm là f'(x). Đồ thị của hàm số y = f'(x) được cho như hình vẽ dưới đây:

Biết rằng f(-1) + f(0) < f(1) + f(2). Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn [-1;2] lần lượt là:
A. f(1);f(2)
B. f(2);f(0)
C. f(0);f(2)
D. f(1);f(-1)
Cho hàm số f(x) liên tục trên ℝ và có một nguyên hàm là F(x). Biết F(2) = –7. Giá trị của F(4) là:


![]()
![]()
Giả sử F(x) là một nguyên hàm của f ( x ) = ln ( x + 3 ) x 2 sao cho F(-2)+F(1)=0. Giá trị của F(-1)+F(2) bằng

B. 0


Biết F(x) làm một nguyên hàm của hàm số f ( x ) = 2016 . e 2016 và F(0) = 2018. Giá trị của F(1) là
A. F(1) = 2016
B. F ( 1 ) = 2016 e 2016
C. F ( 1 ) = 2016 e 2016 + 2
D. F ( 1 ) = e 2016 + 2017
Biết rằng xe x là một nguyên hàm của f(-x) trên khoảng - ∞ ; + ∞ . Gọi F(x) là một nguyên hàm của f ' ( x ) e x thỏa mãn F(0)= 1, giá trị của F(-1) bằng
A.
.
B.
.
C.
.
D.
.
Biết F ( x ) là một nguyên hàm của hàm số f ( x ) = ln 2 x + 1 . ln x x thoả mãn F ( 1 ) = 1 3 . Giá trị của F 2 ( e ) là
A. 8 9
B. 1 9
C. 8 3
D. 1 3