#định_lý_Bézout_toán_nâng_cao_lớp_8
Cho đa thức \(f\left(x\right)\) là đa thức bậc 3 thỏa mãn \(f\left(2\right)=3\); \(f\left(3\right)=4\); \(f\left(4\right)=5\) và \(f\left(5\right)=10\) . Tính giá trị \(f\left(6\right)=?\)
a) Tìm đa thức f(x) biết rằng: f(x) chia cho x+2 dư 10, f(x) chia cho x-2 dư 22, f(x) chia cho x^2-4 được thương là -5x và còn dư
b) Chứng minh rằng với mọi số nguyên a thì \(a^3+5a\) chia hết cho 6
Câu 15: ( 1.5 điểm)
a) Tìm giá trị nhỏ nhất của biểu thức:
A = ( 2x - 3y+1)2 + ( 2 + y) 2 - 12x + 2020
b) Chứng minh biểu thức sau có giá trị không phụ thuộc vào giá trị của biến:
B = ( x - 2y)(x2 + 2xy + 4y2) - x ( x + 2)(x - 2) - 4x + 8y3 + 2021
Cho phân thức P(x)=5x^2/(x^6+x^5-x^3-5x^2-4x+1). Chứng minh rằng tồn tại một đa thức Q(x) với các hệ số nguyên sao cho Q(x0)=P(x0) với mọi x0 là nghiệm của đa thức R(x)=x^8_x^4+1
a) Cho đa thức f(x)= x4-3x3+bx2+ax+b
g(x)= x2-1
Tìm các hệ số của a,b để f(x) chia hết cho g( x)
b) Tìm giá trị nhỏ nhất của biểu thức A= x(2x-3)
#Định_lý_BéZout_toán_nâng_cao_lớp_8
Cho đa thức \(P\left(x\right)\) là đa thức bậc 4 có hệ số cao nhất là 1 thỏa mãn \(P\left(1\right)=3\) \(P\left(3\right)=11\) và \(P\left(5\right)=27\). Tính giá trị của \(P\left(-2\right)+7P\left(6\right)=?\)
Chứng minh rằng đa thức f(x) = x^2018 + x^2014 + 1 chia hết cho x^2 + x +1