Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lucifer

Cho f(x) = \(\dfrac{1}{2e^x +3}\)thỏa mãn F(0)=10.Tìm F(x)

Hoàng Tử Hà
25 tháng 5 2021 lúc 15:36

\(u=e^x\Rightarrow du=e^xdx\Rightarrow dx=\dfrac{du}{e^x}\)

\(\Rightarrow\int f\left(x\right)dx=\int\dfrac{du}{2u^2+3u}\)

\(\dfrac{1}{2u^2+3u}=\dfrac{A}{u}-\dfrac{B}{2u+3}=\dfrac{A\left(2u+3\right)-Bu}{2u^2+3u}=\dfrac{\left(2A-B\right)u+3A}{2u^2+3u}\)

\(\Rightarrow\left(2A-B\right)u+3A=1\Rightarrow\left\{{}\begin{matrix}2A-B=0\\3A=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=\dfrac{1}{3}\\B=\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\int\dfrac{du}{2u^2+3u}=\dfrac{1}{3}\int\left(\dfrac{1}{u}-\dfrac{2}{2u+3}\right)du=\dfrac{1}{3}\left[lnu-ln\left(2u+3\right)\right]+C\)

\(\Rightarrow F\left(x\right)=\dfrac{1}{3}\left[ln\left(e^x\right)-ln\left(2e^x+3\right)\right]+C=\dfrac{1}{3}\left[x-ln\left(2e^x+3\right)\right]+C\)

\(F\left(0\right)=10\Rightarrow\dfrac{1}{3}\left[x-ln\left(2e^x+3\right)\right]+C=10\Rightarrow C=\dfrac{ln5}{3}+10\)

\(\Rightarrow F\left(x\right)=\dfrac{1}{3}\left[x-ln\left(2e^x+3\right)\right]+\dfrac{ln5}{3}+10\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Văn Trí
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết