Bài 2:
b. \(\sqrt{\left(3x+1\right)^2}=25\)
<=> \(|3x+1|=25\)
<=> \(\left[{}\begin{matrix}3x+1=-25\\3x+1=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-26}{3}\\x=8\end{matrix}\right.\)
Bài 3:
Ta có: \(\dfrac{5}{\sqrt{7}+\sqrt{2}}+\dfrac{2}{3+\sqrt{7}}+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)
\(=\sqrt{7}-\sqrt{2}+3-\sqrt{7}+\sqrt{2}\)
=3
Bài 1:
a: Ta có: \(\sqrt{36}+\sqrt[3]{-64}+\sqrt{144}-\sqrt[3]{125}\)
\(=6-4+12-5\)
=9