Cho hàm số y = x 3 - 3 x + 2 C . Biết rằng đường thẳng d : y = a x + b cắt đồ thị C tại ba điểm phân biệt M, N, P. Tiếp tuyến tại ba điểm M, N, P của đồ thị C cắt C tại các điểm M ' , N ' , P ' (tương ứng khác M, N, P). Khi đó đường thẳng đi qua ba điểm M ' , N ' , P ' có phương trình là
A. y = 4 a + 9 x + 18 - 8 b
B. y = 4 a + 9 x + 14 - 8 b
C. y = a x + b
D. y = - 8 a + 18 x + 18 - 8 b
Cho a → = m i → + ( 2 n - 1 ) j → , b → = - n ; 1 + m Khi đó cặp số (m;n) để a → = b → là
Cho hình hộp ABCD.A’B’C’D’ có A(1;0;0), B(2;-1;1), D(0;1;1) và A’(1;2;1). Gọi M, N, P, Q, E, F lần lượt là giao điểm của hai đường chéo của sáu mặt hình hộp. Tính thể tích của V khối đa diện lồi hình thànhbởi sáu điểm M, N, P, Q, E, F.
A. V = 1 3
B. V = 1 2
C. V = 2 3
D. V = 1
hãy so sánh a phần b với a+m phần b+m (a,b,m e N)
Cho hàm số f ( x ) = 1 + c o s x ( x - π ) 2 k h i x ≠ π m k h i x = π Tìm m để f(x) liên tục tại x = π
A. m = 1 4
B. m = - 1 4
C. m = 1 2
D. m = - 1 2
Cho đồ thị y=f’(x) trên [m;n] (như hình vẽ). Biết f(a)> f(c)>0; f(d)<f(b)<0 và
m
a
x
f
(
x
)
[
m
;
n
]
=
f
(
n
)
;
m
i
n
f
(
x
)
[
m
;
n
]
=
f
(
m
)
Số điểm cực trị của hàm số
y
=
f
(
x
)
trên [m;n] là
A. 6
B. 8
C. 9
D. 10
Cho tam giác ABC. Gọi M là trung điểm của AC, N là trung điểm của AB. Trên tia đối MB lấy điểm E sao cho MB=ME. Trên tia đối NC lấy điểm D sao cho DN= CN.
C/m: D, A, E thẳng hàng
Cho hàm số y = - x + 2 x - 1 có đồ thị (C) và điểm A a ; 1 . Biết a = m n (với mọi m , n ∈ N và m n tối giản) là giá trị để có đúng một tiếp tuyến của (C) đi qua A. Khi đó giá trị m + n là:
A. 2
B. 7.
C. 5
D. 3.
Cho a, b, c > 1. Biết rằng biểu thức P = log a b c + log b a c + 4 log c a b đạt giá trị nhỏ nhất bằng m khi log b c = n . Tính giá trị m + n.
A. m + n = 14
B. m + n = 25 2
C. m + n = 12
D. m + n = 10
Cho a,b,c>1 Biết rằng biểu thức P = log a b c + log b a c + 4 log c a b đạt giá trị nhỏ nhất bằng m khi log b c = n . Tính giá trị m + n .
A. 12
B. 25/2
C. 14
D. 10