Cho đường tròn (O), dây AB=24cm, dây AC=20cm, góc BAC < 90 độ và điểm O nằm trong
tam giác ABC. Gọi M là trung điểm AC. Khoảng cách từ M đến AB bằng 8cm.
a. Chứng minh tam giác ABC cân tại C
b. Tính bán kính đường tròn.
Cho đường tròn (O), dây AB=24cm, dây AC=20cm, góc BAC < 90 độ và điểm O nằm trong
tam giác ABC. Gọi M là trung điểm AC. Khoảng cách từ M đến AB bằng 8cm.
a. Chứng minh tam giác ABC cân tại C
b. Tính bán kính đường tròn.
cho đường tròn tâm O, dây AB=24cm, AC=20cm. Góc BAC<90độ và O nằm trong góc đó. M là trung điểm AC. khoảng cách từ M đến AB là 8cm.
a) C/m: Tam giác ABC cân tại C
b) Tính bán kính đường tròn tâm O
Cho đường tròn (O) có các dây AB = 24 cm, AC = 20 cm, góc B A C ^ < 90 0 và O nằm trong góc B A C ^ . Gọi M là trung điếm của AC. Khoảng cách từ M đến AB bằng 8cm
a, Chứng minh tam giác ABC cân
b, Tính bán kính của (O)
Cho đường tròn tâm O. Dây AB=24cm, dây AC=20cm, góc BAC <90°. Gọi M là trung điểm AC. Biết MO =8cm.
a) Chứng minh ∆ABC cân tại C. b) Tính bán kính của đường tròn tâm O.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, độ dài AB = 6a, AC = 5a, điểm O nằm
trong góc BAC. Gọi M là trung điểm của AC. Biết khoảng cách từ M đến AB bằng 2a.
a) Chứng minh tam giác ABC cân tại C.
b) Tính bán kính của đường tròn.
cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:
A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định
b. MA^2+MB^2+MC^2+MD^2=4R^2
c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau
2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD
a,CM: Sahkb=Sacb+Sadb
b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ
3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat
5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ
7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.
nhờ các bạn ssieeu toán giải hộ mình với! thanks nhiều
Cho đường tròn tâm O, dây AB = 24 cm, AC = 20 cm , \(\widehat{BAC}< 90^o\). M là trung điểm AC. Khoảng cách từ M đến AB = 8. Tính bán kính
Cho tam giác ABC cân tại A, I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A, O là trung điểm của IK.
a,C/minh: B, C, I, K cùng nằm trên một đường tròn
b, C/minh: AC là tiếp tuyến của đường tròn (O).
c, Tính bán kính đường tròn (O) biết AB = AC = 20cm, BC = 24cm
BT1: Cho đường tròn tâm O, đường kính AB. Dây CD cắt AB tại M biết MC= 4cm, MD= 12cm, góc BMD= 30 độ
a/ Tính khoảng cách từ O đến CD
b/ Tính bán kính đường tròn O
BT2: Cho đường tròn tâm O bán kính R, đường kính AB, dây CD vuông góc với OA tại điểm M là trung điểm của OA
a/ Tứ giác ACOD là hình gì ? Vì sao?
b/ Tam giác BCD là tam giác gì ? Vì sao ?