Cho đường tròn (O), hai dây AB, CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB > CD, chứng minh rằng MH > MK.
Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn . Qua a kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm ) . Tia Ax nằm giữa AB và AO cắt đường tròn O,R tại 2 điểm C và D (C nằm giữa A và D ) . Gọi M là trung điểm của dây CD, kẻ BH vuông góc với AO tại H
a/ tính OH . AO theo R
b/ cho góc ABC = góc ADB . Chứng minh AC.AD=AH.AOvà cho góc CHO=góc CDO =180°
c/Qua C kẻ tiếp tuyến thứ hai Cho với đuờng tròn (O) cắt OM tại E. Chứng minh điểm E,H,B thẳng hàng.
Bài 1: Cho AB và CD là 2 dây của đường tròn O cắt nhau tại M nằm bên trong đường tròn gọi H, K lần lượt là trung điểm của AB, CD biết AB> CD. So sánh MH và MK
Bài 2: Cho đường tròn tâm O bán kính AB vẽ 2 dây AB và CD // với nhau. CMR:
a) AC = BD
b) 3 điểm C, O, D thẳng hàng
( Chú ý: BONUS THÊM HÌNH CÀNG TỐT )
Cho đường tròn (O), hai dây AB và CD cắt nhau ở M nằm bên ngoài đường tròn. Gọi H và K lần lượt là trung điểm của AB và CD. So sánh MH và MK, biết AB < CD.
Cho đường tròn (O) đường kính AB. Từ điểm P bên ngoài đường tròn, kẻ đường thẳng d vuông góc với AB sao cho d cắt (O) tại C và D (D nằm giữa P và C). Các đường thẳng PA,PB lần lượt cắt đường tròn tại M và N. Đường thẳng AN cắt CD tại H. Gọi K là trung điểm của PH. CHứng minh: DH.PC=HC.PD
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)
Từ điểm M nằm ngoài đường tròn (O), kẻ 2 tiếp tuyến MA; MB. Tia Mx, nằm giữa hai tia MA và MO cắt (0) tại C và D và cắt AB tại N. Gọi K là trung điểm CD; H là giao điểm AB và OM.
a) Chứng minh OKNH nội tiếp b) Chứng minh MC.MD= MN.MK
c) Chứng minh BCK và BAD đồng dạng
d) Đường thắng qua H vuông góc OA cắt AC và AD tại E và F. Chứng minh HE = HF
giup minh cau d nha
b1: cho đường tròn tâm O, 2 dây AB, CD bằng nhau. Các đường thẳng AB, CD cắt nhau tại S. Ở bên ngoài đường tròn sao cho A nằm giữa S và B, C nằm giữa S và D. CM:
a, SC là tia phân giác của góc ÁC
b, SA=SC
b2: cho 1 đường tròn tâm O và điểm M nằm ngoài đường tròn tâm O. Tia MO cắt đường tròn tâm O tại A và B (A nằm giữa M và O). CMR:
a, MA là khoảng cách nhỏ nhất từ M tới các điểm của đường tròn tâm O
b, MB là khoảng cách lớn nhất từ M tới các điểm của đường tròn tâm O
cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn . Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm ) . Tia Mx nằm giữa MA và MO cắt đường tròn (O;R) tại hai điểm C và D ( C nằm giữa M và D ) . Gọi I là trung điểm của dây CD , kẻ AH vuông góc với MO tại H
a) Tính OH , OM theo R
b) Chứng minh : bốn điểm M ,A ,I ,O cùng thuộc một đường tròn
c) Gọi K là giao điểm của OI với HA . Chứng minh KC là tiếp tuyến đường tròn (O:R)