Đường tròn (T) có tâm I 1 ; - 2 và bán kính R = 5
ABCD là hình bình hành ⇒ A B / / C D ⇒ C D nhận A B → làm VTCP
⇒ C D nhận vecto (1,3) làm VTPT
Phương trình đường thẳng d đi qua I 1 ; - 2 và vuông góc với AB là:
Chọn D.
Đường tròn (T) có tâm I 1 ; - 2 và bán kính R = 5
ABCD là hình bình hành ⇒ A B / / C D ⇒ C D nhận A B → làm VTCP
⇒ C D nhận vecto (1,3) làm VTPT
Phương trình đường thẳng d đi qua I 1 ; - 2 và vuông góc với AB là:
Chọn D.
Trong mặt phẳng tọa độ Oxy,cho đường thẳng ∆ : x - y = 0 . Đường tròn (C) có bán kính R = 10 cắt Δ tại hai điểm A, B sao cho A B = 4 2 . Tiếp tuyến (C) tại A và B cắt nhau tại một điểm thuộc tia Oy. Phương trình đường tròn (C) là:
A. x + 5 2 + y + 3 2 = 10
B. x - 5 2 + y - 3 2 = 10
C. x - 3 2 + y - 5 2 = 10
D. x + 3 2 + y + 5 2 = 10
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình x+y-1=0 và đường tròn (C): ( x - 3 ) 2 + ( y - 1 ) 2 = 1 . Ảnh của đường thẳng d qua phép tịnh tiến theo véc tơ v → = 4 ; 0 cắt đường tròn (C) tại hai điểm A x 1 ; y 1 và B x 2 ; y 2 . Giá trị x 1 + x 2 bằng
A. 5
B. 8
C. 6
D. 7
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;2;1) và hai đường thẳng d 1 : x - 1 1 = y + 1 1 = z - 3 - 1 ; d 2 : x - 1 1 = y + 2 1 = z - 2 1 . Viết phương trình đường thẳng d song song với mặt phẳng P : 2 x + 3 y + 4 z - 6 = 0 , cắt đường thẳng d 1 , d 2 lần lượt tại M và N sao cho A M → A N → = 5 và điểm N có hoành độ nguyên.
A. d : x - 2 1 = y - 2 = z - 2 1
B. d : x - 3 1 = y - 1 2 = z - 1 - 2
C. d : x 3 = y + 2 2 = z - 4 - 3
D. d : x - 1 4 = y + 1 - 4 = z - 3 1
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x-y-3=0 và điểm A(2;6). Trên đường thẳng d lấy hai điểm B và C sao cho tam giác ABC vuông tại A và có diện tích bằng 35 2 2 . Phương trình đường tròn ngoại tiếp tam giác ABC là:
A. hoặc x + 6 2 + y + 3 2 = 25
B. x - 5 2 + y - 2 2 = 25 hoặc x - 6 2 + y - 3 2 = 25
C. x - 5 2 + y - 2 2 = 100 hoặc x - 6 2 + y - 3 2 = 100
D. x + 5 2 + y + 2 2 = 100 hoặc x + 6 2 + y + 3 2 = 100
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + z - 10 = 0 điểm A(1;3;2) và đường thẳng d : x = - 2 + 2 t y = 1 + t z = 1 - t . Tìm phương trình đường thẳng D cắt (P) và d lần lượt tại hai điểm M và N sao cho A là trung điểm của cạnh MN
A. x - 6 7 = y - 1 - 4 = z + 3 - 1
B. x + 6 7 = y + 1 4 = z - 3 - 1
C. x - 6 7 = y - 1 4 = z + 3 - 1
D. x + 6 7 = y + 1 - 4 = z - 3 - 1
Viết phương trình đường thẳng d đi qua điểm A(-4;-5;3) và cắt cả hai đường thẳng d 1 : x + 1 3 = y + 3 - 2 = z - 2 - 1 và d 2 : x - 2 2 = y + 1 3 = z - 1 - 5
A. x + 4 3 = y + 5 2 = z - 3 - 1
B. x + 4 5 = y + 5 4 = z - 3 7
C. x + 4 - 1 = y + 5 5 = z - 3 2
D. x + 4 - 2 = y + 5 3 = z - 3 2
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng
d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A a ; 0 ; 0 , A ' 0 ; 0 ; b . Gọi (P) là mặt phẳng chứa d và d '; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng ∆ thay đổi trên (P) nhưng luôn đi qua H đồng thời ∆ cắt d và d ' lần lượt là B, B '. Hai đường thẳng AB, A'B' cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có vectơ chỉ phương u → = 15 ; - 10 ; - 1 (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = - 9
D. T = 6
Khi đồ thị hàm số y = x 3 - 3 m x + 2 có hai điểm cực trị A, B và đường tròn (C): ( x - 1 ) 2 + ( y - 1 ) 2 = 3 cắt đường thẳng AB tại hai điểm phân biệt M,N sao cho khoảng cách giữa M và N lớn nhất. Tính độ dài MN
A. MN= 3
B. MN=1.
C. MN=2.
D. MN=2 3