Cho đường tròn (O;R) và một đường thẳng d ko có điểm chung với (O) .Trên d lấy điểm M bất kỳ, qua M kẻ các tiếp tuyến MA; MB với (O) kẻ đường kính AOC, tiếp tuyến của C cắt AB tại E.
a) C/m : \(\Delta BCM\infty\Delta BEO\)
b) C/m : \(CM\perp OE\)
c) Tìm GTNN của dây AB và diện tích tứ giác MAOB
Cần : câu b và c , mấy anh chị giúp em với !!!
Cho đường tròn O bán kính R và hai điểm A, B nằm trên đường tròn (AB không là đường kính). Các tiếp tuyến tại A, B của đường tròn cắt nhau tại M. Kẻ cát tuyến MCD với đường tròn (C nằm giữa M và D)
a, Chứng minh các tam giác MBC và MDB đồng dạng
b, Chứng minh tứ giác MAOB là nội tiếp
c, Khi AB = R 3 , tính bán kinh đường tròn ngoại tiếp tứ giác MAOB theo R
d, Kẻ dây AE của (O) song song với MD. Nối BE cắt MD tại I. Chứng minh I là trung điểm của CD
Cho đường tròn (O) bán kính R và đường thằng (d) không đi qua O , cắt đường tròn (O lại 2 điểm E,F . Lấy điểm M bất kì trên tia đối Fe, qua M kẻ 2 tiếp tuyến MC,MD với đường tròn ( C,D) là các tiếp điểm 1. chứng minh tứ giác MCOD nội tiếp trong một đường tròn
2. gọi K là trung điểm EF . chứng minh KM là phân giác góc CKD
3. đường thẳng đi qua O và vuông góc với MO cắt các tia MC,MD theo thứ tự tại R,T . tìm vị trí của điểm M trên (d) sao cho diện tích tam giác MRT nhỏ nhất
Cho đường tròn O bán kính R và hai điểm A, B nằm trên đường tròn (AB không là đường kính). Các tiếp tuyến tại A, B của đường tròn cắt nhau tại M. Kẻ cát tuyến MCD với đường tròn (C nằm giữa M và D).
a)Chứng minh tứ giác MAOB là nội tiếp.
b) Chứng minh MB2 = MC.MD
Cho đường tròn tâm O bán kính R và đường thẳng (d) không qua O, cắt đường tròn (O) tại 2 điểm A, B. Lấy điểm M bất kì trên tia đối của tia BA, qua M kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là tiếp điểm)
1. Chứng minh tứ giác MCOD nội tiếp trong một đường tròn.
2. Gọi H là trung điểm của AB. Chứng minh HM là phân giác của góc CHD
Cho đường tròn (O; R) đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?
Bài 4: (3,5 điểm) Cho đường tròn (O ; R) đường kính AB và điểm M bất kì thuộc đường tròn (M ≠ A, B) . Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a) Chứng minh: 4 điểm A, D, M , O cùng thuộc một đường tròn
b) Chứng minh: OD // BM và suy ra D là trung điểm của AN
c) Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh: BE là tiếp tuyến của đường tròn (O ; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên (O ; R) thì J chạy trên đường nào?
Cho đường tròn (O) đường kính AB, Ax và By là hai tiếp tuyến của (O) tại các tiếp điểm A, B. Lấy điểm M bất kì trên nửa đường tròn (M thuộc cùng một nửa mặt phẳng bờ AB chứa Ax, By), tiếp tuyến tại M của (O) cắt Ax, By lần lượt tại C và D.
1. Chứng minh: Tứ giác AOMC nội tiếp.
2. Giả sử BD = R√3. Tính AM.
3. Nối OC cắt AM tại E, OD cắt BM tại F, kẻ MN ⊥ AB (N ∈ AB), chứng minh đường tròn ngoại tiếp ΔNEF luôn đi qua 1 điểm cố định.
4. Tìm vị trí điểm M trên nửa đường tròn để bán kính đường tròn ngoại tiếp tứ giác CEFD có độ dài nhỏ nhất
Cho đường tròn (O, R), đường kính AB. Qua điểm A và điểm B lần lượt vẽ hai đường thẳng d và d’ là hai tiếp tuyến của đường tròn. Lấy điểm M bất kì thuộc đường tròn (O) (M khác A, B). Qua M kẻ tiếp tuyến với đường tròn (O) cắt d và d’ theo thứ tự tại C và D.
a) Chứng minh A, C, M, O thuộc một đường tròn.
b) Chứng minh AC.BD không đổi khi M di chuyển trên đường tròn (O)
c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp DCOD.