Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Văn Tình

cho đường tròn (O,R) và một điểm A nằm ngoài đường tròn (O). Vẽ tiếp thuyến AB của đường tròn (O)(B là tiếp điểm). Vẽ dây cung BC của (O) vuông góc với OA tại H

a) cm: H là trung điểm của BC

b) cm: AC là tiếp tuyến của (O)

c) với OA=2R. cm : tam giác ABC đều

d) trên tia đối của BC lấy điểm Q bất kì. Vẽ tiếp tuyến QD, QE của (O). cm ba điểm A,D,E thẳng hàng

a: Ta có: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC và OH là phân giác của góc BOC

b: Ta có: OH là phân giác của góc BOC

=>\(\widehat{BOH}=\widehat{COH}\)

=>\(\widehat{BOA}=\widehat{COA}\)

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

mà \(\widehat{OBA}=90^0\)

nên \(\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O)

c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: ΔOBA=ΔOCA

=>\(\widehat{BAO}=\widehat{CAO}\)

mà tia AO nằm giữa hai tia AB và AC

nên \(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Ta có: ΔOBA=ΔOCA

=>AB=AC

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

 

d.

\(\left\{{}\begin{matrix}OD=OE=R\\QD=QE\left(\text{t/c hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\) 

\(\Rightarrow OQ\) là trung trực DE \(\Rightarrow OQ\perp DE\) , gọi giao điểm của chúng là F.

Áp dụng hệ thức lượng trong tam giác vuông ABO:

\(OB^2=OH.OA\)

QE là tiếp tuyến \(\Rightarrow\Delta QEO\) vuông tại E, áp dụng hệ thức lượng:

\(OE^2=OF.OQ\)

Mà \(OB=OE=R\)

\(\Rightarrow OH.OA=OF.OQ\Rightarrow\dfrac{OA}{OQ}=\dfrac{OF}{OH}\)

Xét hai tam giác AOF và QOH có:

\(\left\{{}\begin{matrix}\dfrac{OA}{OQ}=\dfrac{OF}{OH}\\\widehat{FOH}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAF\sim\Delta QOH\left(g.g\right)\)

\(\Rightarrow\widehat{AFO}=\widehat{QHO}=90^0\)

Hay \(AF\perp QO\) tại F

Mà \(DE\perp QO\) cũng tại F

\(\Rightarrow3\) điểm A, D, E thẳng hàng 

loading...


Các câu hỏi tương tự
Lê Hồng Ngọc
Xem chi tiết
dinh phuc
Xem chi tiết
Xem chi tiết
BJYX SZD
Xem chi tiết
Phạm Thị Huyền
Xem chi tiết
Mynnie
Xem chi tiết
Hoàng Phương Thảo
Xem chi tiết
Nguyễn Ngọc Tú Uyên
Xem chi tiết
phạm ngọc nhi
Xem chi tiết