Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^
dễ ẹc thì lm cho mk coi đi
mk ko bt lm
Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^
dễ ẹc thì lm cho mk coi đi
mk ko bt lm
Cho đường tròn tâm O và đường thẳng d không giao nhau với đường tròn. Trên d lấy M bất kì, qua M kẻ 2 tiếp tuyến MA, MB(A,B là các tiếp điểm). Gọi H là hình chiếu của O lên d, AB cắt OH và OM lần lượt ở I và K.
a, Chứng minh: r^2=OI.OH=OK.OM ( r là bán kính đường tròn tâm O)
b, Chứng minh khi M di chuyển trên đường thẳng d thì đường tròn ngoại tiếp tam giác MIK luôn đi qua 2 điểm cố định
Cho đường tròn (O ; r) và đường thẳng d không cắt đường tròn .từ điểm M trên đường thẳng (d) vẽ hai tiếp tuyến MA MB với đường tròn (O)( A,B là hai tiếp điểm). Gọi H là giao điểm của mo và AB kẻ đường kính AC Chứng minh rằng:
bốn điểm m A,O,B cùng thuộc một đường tròn
b.BC song song với MO
C Đường thảng vuông góc với AC tại O cắt AB tại y.Chứng minh rằng HI.HB+HO.HM=R2
d. KHI ĐIỂM m di chuyển trên đường thẳng(d) thì đường thẳng AB luôn đi qua 1 điểm cố định
Cho đường tròn tâm (O) cố định . Từ một điểm A cố định ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AM và An với đường tròn ( M và N là các tiếp điểm ) đường thẳng qua A cắt đường tròn tâm (O) tại hai điểm B và C ( B nằm giữa A và C ) gọi I là trung điểm BC . a, chứng minh tứ giác amon nội tiếp.
b, gọi k là giao điểm của MN và BC . chứng minh tam giác AKM đồng dạng tam giác AMI và AK.AI=AB.AC
Cho đường tròn tâm (O) cố định . Từ một điểm A cố định ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AM và An với đường tròn ( M và N là các tiếp điểm ) đường thẳng qua A cắt đường tròn tâm (O) tại hai điểm B và C ( B nằm giữa A và C ) gọi I là trung điểm BC . a, chứng minh tứ giác amon nội tiếp. b, gọi k là giao điểm của MN và BC . chứng minh tam giác AKM đồng dạng tam giác AMI và AK.AI=AB.AC
Cho đường tròn (O,R) cố định.Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm).Gọi H là giao điểm của OM,AB
a) CM: OM vuông góc với AB và OH.OM=R2
b) Từ M kẻ cát tuyến MNP với đường tròn (O) (N nằm giữa M,P),gọi I là trung điểm NP (I khác O).Chứng minh: A,M,O,I thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA,MB theo thứ tự C,D.Biết MA=5cm ,tính chu vi tam giác MCD
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt MA,MB lần lượt tại E,F.Xác định vị trí của điểm M để diện tích tam giác MEF nhỏ nhất
~Giải nhanh giùm mình nhé~
1) Cho điểm M nằm ngoài đường tròn (O;R) . Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O) (A,B là hai tiếp điểm).Gọi C là giao điểm của OM và AB . Vẽ đường kính AD của (O;R). Gọi Q là giao điểm khác D của MD và (O;R).Chứng minh:
a) Các điểm M,A,O,B cùng thuộc một đường tròn
b) MQ.MD=MC.MO
1) Cho điểm M nằm ngoài đường tròn (O;R) . Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O) (A,B là hai tiếp điểm).Gọi C là giao điểm của OM và AB . Vẽ đường kính AD của (O;R). Gọi Q là giao điểm khác D của MD và (O;R).Chứng minh:
a) Các điểm M,A,O,B cùng thuộc một đường tròn
b) MQ.MD=MC.MO
Từ điểm M nằm ngoài đường tròn (O;R) kẻ các tiếp tuyến MA,MB của đường
tròn (O) (A và B là các tiếp điểm, OM > 2R). Gọi E là trung điểm của đoạn thẳng MB,
C là giao điểm của đường thẳng AE với đường tròn (O) và tia MC cắt đường tròn (O)
tại điểm thứ hai D.
a) Chứng minh: tử giác MAOB nội tiếp và gócMOB = gócADB;
b) Chứng minh: BF^2 = EC EA và AD ||MB.
c) Kẻ đường kính BI của đường tròn (O). Đường thẳng MI và đường thẳng AD
cắt nhau tại K . Chứng minh: KD = 3KA.
Cho đường tròn ( O;R) và 1 điểm H cố định nằm ngoài đường tròn. Qua H kẻ đường thằng d vuông với đoạn thằng OH. Từ 1 điểm S trên đường thẳng d kẻ hai tiếp tuyến SA, SB với đường tròn (O). Gọi M, N lần lượt là giao điểm của đoạn thẳng SO với đoạn thẳng AB và đường tròn (O;R)
Câu hỏi: Khi S di chuyển trên đường thẳng d thì điểm M di chuyển trên đường nào?