Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
QUan

Cho đường tròn (O;R) dường kính AB . Vẽ 2 tiếp tuyến Ax và By của đường tròn . Gọi M là 1 điểm tùy ý trên cung AB . Tiếp tuyến tại M của đường tròn Ax và By theo thứ tự C,D

a, CM : AC.BD=R2

b, Tìm vị trí của M để chu vi \(\Delta\) OCD nhỏ nhất

Bùi Thị Vân
4 tháng 10 2016 lúc 22:51

A B C O M E F D

a, Theo tính chất 2 tiếp tuyến cắt nhau ta sẽ chứng minh được AM vuông góc với OC, MD vuông góc BD.
    Mà  \(\widehat{AMB}=90^o\)(góc nội tiếp chắn nửa đường tròn )
    Vậy tứ giác OEMF là hình chữ nhật suy ra \(\widehat{COD}=90^O.\)
    Trong tam giác vuông OCD, ta áp dụng hệ thức lượng suy ra: \(OM^2=CM.MD\Leftrightarrow R^2=CM.MD\).
   Théo tính chât của tiếp tuyến bằng nhau ta có: CM = AC; MD = BD.
    Vậy \(AC.BD=R^2.\)
b, Đặt CM = a. R; MD = b.R. Do \(R^2=MC.MD\Rightarrow a.b=1.\)
Áp dụng hệ thức lượng trong tam giác vuông : \(OC^2=CM.CD\Leftrightarrow OC^2=a.R.\left(a.R+b.R\right)\Leftrightarrow OC=R.\sqrt{a\left(a+b\right)}\)
Tương tự \(OD=R.\sqrt{b\left(a+b\right)}.\)
Vậy chu vi tam giác OCD bằng :
  \(a.R+b.R+R.\sqrt{a\left(a+b\right)}+R.\sqrt{b\left(a+b\right)}\)
\(=R\left(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\right)\)ậy
Suy ra chu vi tam giác OCD  min khi : \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\)min.
Có: \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a}+\sqrt{b}\right)\)
                                                                                \(=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)\)
Do a.b = 1 nên a + b min khi a = b = 1 ( áp dụng BĐT cô - si). 
Vây MIN \(\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)=\sqrt{2}\left(\sqrt{2}+2\right)=2.\left(\sqrt{2}+1\right)\)
Vậy chu vi tam giác OCD min khi M là trung điểm của CD hay M là trung điểm của cung AB>
\(P_{min}\Delta OCD=2\left(\sqrt{2}+1\right).R\)
    
   

 

Kamen rider kiva
15 tháng 10 2016 lúc 16:34

qua dễ, lân sau nho hoi nhung bai toan hoc bua ban nhe.


Các câu hỏi tương tự
QUan
Xem chi tiết
Nguyễn Thanh Thiên Tứ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hoàng MC
Xem chi tiết
NGUYỄN THÙY LINH
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Đỗ Hồng Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
ho minh quan
Xem chi tiết