Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Thu

Cho đường tròn (O;R) đường kính AB và dây CD vuông góc với nhau (CA<CB).Hai tia BC và DA cắt nhau tại E. Từ E kẻ EH vuông góc với AB tại H; EH cắt CA tại F. CHứng minh rằng :

a. Tứ giác CDEF nội tiếp đường tròn.

b. Ba điểm B,D,F thẳng hàng

c. HC là tiếp tuyến của đường tròn O.

d. BC.BE = BD.BF

Cao ngocduy Cao
29 tháng 5 2022 lúc 12:00

REFER :

a) Xét tứ giác CDFE có 

  EF // CD (cùng vuông góc AB)

=> góc DEF= góc EDC (1)

gọi M là giao điểm AB và CD. AB vuông góc CD => M là trung điềm CD

.........=> góc ACD = góc ADC (2)

(1),(2) => góc DEF= góc EDC => CDFE nội tiếp

b) ta có CDFE nội tiếp (cmt) => góc ECF = góc EDF =90 độ (3)

góc ADB =90 độ (góc nội tiếp chắn nửa đường tròn)(4)

(3),(4) => góc EDF + góc ADB =180 độ

=> B,D,F thẳng hàng.

c) ta có tứ giác EHAC có góc H + góc C=180 độ

=> EHAC nội tiếp

=> góc HCA = góc HEA

mà góc HEA=góc ADC(cmt)

mà góc ADC=góc ABC (=1/2sđ cung AC)

=>góc HCA=ABC

=> HC là tiếp tuyến của đường tròn tâm (O)