Cho đường tròn O bán kính R đường kính AB . trên tia đối BA lấy BC sao cho BA > BC . vẽ O' đường kính BC . gọi I là trung điểm AC . vẽ dây MN vuông góc với AC tại I , MC cắt O' tại D ( D khác C )
a, CMR : tứ giác AMCN là hình thoi
b, CM các tứ giác BDM , NIDC nội tiếp
c, Biết OI = R/3 , tính S tứ giác NIDC theo R
Làm hộ mình câu c với
Cho đường tròn tâm (O) đường kính AB. Trên tai đối tia BA lấy C (AB>BC). Vẽ đường tròn tâm (O') đường kính BC. Gọi I là trung điểm của AC. Vẽ dây mn vuong góc với AC tại I, MC cắt đường tròn tâm O' tại D.
a, Tứ giác AMCN là hình gị?
b. Cm: D,B,N thẳng hàng
c. Tứ giác NIDC nội tiếp
d. ID là tiếp tuyến của (O')
Cho tam giác ABC nội tiếp đường tròn (o) đường kính BC . Vẽ dây cung AD của (o) vuông góc với đường kính BC tại H . Gọi M là trung điểm cạnh OC và I là trung điểm cạnh AC . từ M vẽ đường thẳng vuông góc với OC , đường thẳng này cắt tia OI tại N . Trên tia ON lấy điểm S sao cho N là trung điểm cạnh OS
a) c/m tam giác ABC vuông tại A và HA = HD
b) c/m : MN // SC và SC là tiếp tuyến của đường tròn (o)
c) gọi K là trung điểm cạnh HC , vẽ đường tròng đường kính AH cắt cạnh AK tại F . C/m BH . HC = AF . AK
d) Trên tia đối của tia BA lấy điểm E sao cho B là trung điểm cạnh AE . C/m ba điểm E,H,F thẳng hàng
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Chứng minh tứ giác MCAE nội tiếp
b) Chứng minh BE.BM = BF.BN
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Khi EF=4R/ căn 5. Tính DE,DF theo R
b) Cho A,B,C cố định.CMR tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên 1 đường thẳng cố định khi E chạy trên đường tròn (O)
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!
Bài 1:
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.
Bài 2:
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
d) ME cắt đường tròn (O) tại F (khác E). Chứng minh: ∠(MOF) = ∠(MEH )
Cho đường tròn (O; R) đường kính BC và một điểm A nằm trên đường tròn sao
cho AB = R. Gọi H là trung điểm của dây cung AC.
a) Tính số đo các góc của tam giác ABC.
b) Qua C vẽ tiếp tuyến của đường tròn (O) cắt tia OH tại D. Chứng minh DA là tiếp
tuyến của đường tròn (O).
c) Tính độ dài bán kính của đường tròn ngoại tiếp tam giác ACD theo R.
d) Trên tia đối của tia AC lấy điểm M, từ M vẽ hai tiếp tuyến ME và MF với đường
tròn (O) tại E và F. Chứng minh ba điểm D, E, F thẳng hàng.
Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF
Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.
Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.
Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.
Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK.
giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha
Tam giác ABC nội tiếp đường tròn (O;R) đường kính BC. Vẽ dây cung AD của (O) vuông góc với đường kính BC tại H. gọi M là trung điểm của OC và I là trung điểm của AC. Từ M vẽ đường thẳng vuông góc với AC đường thẳng này cắt tia OI tại N. Trên tia ON lấy điểm S sao cho N là trung điểm của OS
a) Cho R= 5cm, AB = 6 cm. Tính AH
b) chứng minh 4 điểm A, H, O, I cùng thuộc một đường tròn
c) chứng minh SC là tiếp tuyến của (O)
d) gọi K là trung điểm HC, vẽ đường tròn đường kính AH cắt cạnh AK tại F. chứng minh HB x AC = AF x AK