Cho đường tròn ( O,R ) đường kính AB. Lấy điểm C thuộc đường tròn ( C khác A,B) . Lấy điểm D thuộc dây BC ( D khác B,C) . Tia AD cắt cung nhỏ BC tại điểm E. Tia AC cắt BE tại F. a,CM: Tứ giác FCDE nội tiếp b,CM:CF . CA = CB . CD c, Gọi I là tâm đường tròn ngoại tiếp của tứ giác FCDE. Cho AI cắt đường tròn (O) tại K .CMR: IC²=IK . IA
a: góc ACB=1/2*sđ cung AB=90 độ
=>góc FCD=90 độ
góc AEB=1/2*sđ cung AB=90 độ
=>góc FED=90 độ
=>góc FCD+góc FED=180 độ
=>FCDE nội tiếp
b: Xét ΔCAD vuông tại C và ΔCBF vuông tại C có
góc CAD=góc CBF
=>ΔCAD đồng dạng với ΔCBF
=>CA/CB=CD/CF
=>CA*CF=CB*CD