Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Văn Anh

Cho đường tròn (O) và điểm A nằm ngoài đường tròn . Qua A kẻ các tiếp tuyến AB, AC với đường tròn. Gọi H là giao điểm OA với BC , I là giao điểm OA với đường tròn (O). a, Chứng minh OH nhân OA =π^2 b, Chứng minh I là tâm đường tròn nội tiếp tam giác ABC. Giúp mình với nhé, mình cảm ơn ^^

Nguyễn Lê Phước Thịnh
13 tháng 1 2024 lúc 20:33

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

b: Ta có: \(\widehat{ABI}+\widehat{OBI}=\widehat{OBA}=90^0\)

\(\widehat{HBI}+\widehat{OIB}=90^0\)(ΔHBI vuông tại H)

mà \(\widehat{OBI}=\widehat{OIB}\)

nên \(\widehat{ABI}=\widehat{HBI}=\widehat{CBI}\)

=>BI là phân giác của góc ABC

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

Xét ΔBAC có

AH,BI là các đường phân giác

AH cắt BI tại I

Do đó: I là tâm đường tròn nội tiếp ΔBAC

Nguyễn thị thúy Quỳnh
13 tháng 1 2024 lúc 20:32

a, Để chứng minh \(OH \times OA = \pi^2\), chúng ta có thể sử dụng định lí thứ ba của đường tròn và định lí Euclid về tiếp tuyến và tiếp tuyến ngoại tiếp. 

 

Gọi \(R\) là bán kính của đường tròn, \(O\) là tâm của đường tròn, \(A\) là điểm nằm ngoài đường tròn, \(B\) và \(C\) là các điểm tiếp tuyến từ \(A\) đến đường tròn. \(H\) là giao điểm giữa \(OA\) và \(BC\).

 

Theo định lí thứ ba của đường tròn, ta có \(OH\) là đoạn trung bình của \(OA\) trong tam giác \(OAB\). Điều này có nghĩa là \(OH\) là trung bình hòa của các phần bằng nhau \(OA\) và \(OB\).

 

\(OA = OB = R\) (bán kính của đường tròn).

 

\(OH = \frac{OA + OB}{2} = \frac{2R}{2} = R\).

 

Vậy, \(OH = R\).

 

Để chứng minh \(OH \times OA = \pi^2\), ta có \(OH \times OA = R \times R = R^2\).

 

Nhưng theo định nghĩa, \(R\) là bán kính của đường tròn, nên \(R^2\) chính là \(\pi^2\) (bán kính mũ hai). Vì vậy, \(OH \times OA = \pi^2\).

 

b, Để chứng minh \(I\) là tâm của đường tròn nội tiếp tam giác \(ABC\), chúng ta có thể sử dụng các định lí về tiếp tuyến và tiếp tuyến ngoại tiếp.

 

Gọi \(I\) là giao điểm của \(OA\) với đường tròn. Khi đó, theo định lí về tiếp tuyến ngoại tiếp, \(OA\) vuông góc với \(AB\) tại \(B\) và \(OA\) vuông góc với \(AC\) tại \(C\).

 

Vì OA là đường trung trực của BC (do H là giao điểm giữa OA và BC, nên OH cũng là đường trung trực của BC.)

 

Nếu I là tâm của đường tròn nội tiếp tam giác ABC, thì OI cũng là đường trung trực của BC

 

Do đó, OHvà OI là cùng một đường trung trực của BC, nên OH = OI.

 

Vậy, I là tâm của đường tròn nội tiếp tam giác ABC.


Các câu hỏi tương tự
Thu Tuyền Trần Thạch
Xem chi tiết
Nguyễn Văn Tú
Xem chi tiết
Nhóc Cô Đơn
Xem chi tiết
Bùi Tiến Lộc
Xem chi tiết
zitzetey
Xem chi tiết
Nguyễn Mai Quỳnh
Xem chi tiết
Km123 San Mine
Xem chi tiết
Ngô Quang Sáng
Xem chi tiết
Nhật Nguyễn
Xem chi tiết