Cho đường tròn (O: R) và một điểm M nằm ngoài đường tròn. Qua M vẽ tiếp tuyến MT và hai cát tuyến MAB, MCD của (O). Chứng minh MT^2= MA. MB= MC. MD= OM^2 - R^2
cho đường tròn (O,R) và điểm M nằm ngoài đường tròn . kẻ cát tuyến MAB và tiếp tuyến MT. đặt OM = d . C/m MA.MB = MT^2 = d^2 - R^2 ( vẽ hình nữa thì càng tốt ạ ) cảm ơn
cho đường tròn (O,R) và điểm M nằm ngoài đường tròn . kẻ cát tuyến MAB và tiếp tuyến MT. đặt OM = d . C/m MA.MB = MT^2 = d^2 - R^2 ( vẽ hình nữa thì càng tốt ạ ) cảm ơn
cho đường tròn (o) và điểm M nằm bên ngoài đường tròn đó . qua điểm M kẻ tiếp tuyến MT và cát tuyến MAB
Chứng minh MT căn bậc 2 = MA nhân MB
cho đường tròn ( O) và điểm M nằm bên ngoài đường tròn đó. QUA điểm M kẻ tiếp tuyến MT và cát tuyến MAB a/ CM MT mũ 2 = MA. MB b/TÍNH BÁN KÍNH ĐƯỜNG TRÒN
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. qua điểm M kẻ tiếp tuyến MT và cát tuyến MAB với đường tròn. chứng minh MT2 =MA.MB
Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn đó. Qua điểm M kẻ tiếp tuyến MT và cát tuyến MAB.
Chứng minh M T 2 = M A . M B .
25. Từ một điểm M cố định ở bên ngoài đường tròn (O) ta kẻ một tiếp tuyến MT và một cát tuyến MAB của đường tròn đó. a) Chứng minh ta luôn có MT2 = MA.MB và tích này không phụ thuộc vị trí của cát tuyến MAB b) Ở hình 2 cho MT = 20, MB=50cm, tính bán kính đường tròn
a) Từ một điểm M ở bên ngoài đường tròn \(\left(O;R\right)\)kẻ tiếp tuyến MT và hai cát tuyến MAB và MCD với đường tròn (O) \(\left(A,B,C,D\in\left(O\right)\right)\). Chứng minh \(MA.MB=MC.MD=MT^2=OM^2-R^2\)
b) Qua điểm M ở bên trong đường tròn \(\left(O;R\right)\)kẻ hai dây cung AB và CD của đường tròn (O) \(\left(A,B,C,D\in\left(O\right)\right).\)Chứng minh\(MA.MB=MC.MD=R^2-OM^2\)