a, Tính được OB=10cm
b, Ta có ∆OBC = ∆OBA (c.g.c) => BC là tiếp tuyến của đường tròn (O)
a, Tính được OB=10cm
b, Ta có ∆OBC = ∆OBA (c.g.c) => BC là tiếp tuyến của đường tròn (O)
Cho đường tròn tâm O bán kính 3cm và điểm A nằm trên đường tròn. Qua A kẻ tiếp tuyến Ax, trên tia Ax lấy điểm B sak chk AB=3cm:
a.Tính OB
b.Qua A kẻ đường vuông góc với OB tại H và cắt đường tròn tâm O tại C. Chứng minh BC là tiếp tuyến của đường tròn( chủ yếu giải zùm mình câu này nha)
c. Tính AC
Cho đường tròn O, bán kính R. A nằm trên đường tròn. Qua A, kẻ tiếp tuyến Ax, lấy B thuọc Ax sao cho AB= 8cm.
a. Tính OB
b. Qua A, kẻ dường vuông góc với OB,cắt đường tròn O ở C. Chứng minh BC là tiếp tuyến của O.
Cho đường tròn tâm O bán kính=5cm điểm A trên đường tròn qua A kẻ tiếp tuyến Ax trên đó lấy B sao cho AB=AO
a. tính OB
b. qua A kẻ đường thẳng vuông góc với OB cắt đường tròn ở C cm: BC là tiếp tuyến đường tròn tâm O
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O; R) có đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O; R), trên đường tròn (O; R) lấy điểm C sao cho .
a/ Chứng minh: Tam giác ABC vuông và tính độ dài AC, BC theo R.
b/ Tia BC cắt Ax tại M, kẻ CH AB tại H. Chứng minh: MC.BC = AH.AB
c/ Gọi I là trung điểm của CH, tia BI cắt AM tại E. Chứng minh: E là trung điểm của AM và EC là tiếp tuyến của đường tròn (O; R).
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Cho đường tròn (O;R),đường kính AB . Qua điểm A kẻ tiếp tuyến Ax đến đường tròn (O) . Trên tia Ax lấy điểm C sao cho AC > R . Từ điểm C kẻ tiếp tuyến CM với đường tròn (O) (M là tiếp điểm)
a) Chứng minh 4 điểm A,C,O,M cùng thuộc một đường tròn
b) Chứng minh rằng MB//OC
c) Gọi K là giao điểm thứ hai của BC với đường tròn (O) . Chứng minh rằng BC.BK`=4R^2`
cho nửa đường tròn (O) đường kính AB, kẻ tiếp tuyến Ax. Qua C nằm trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M, tiai BC cắt Ax tại M, tia BC cắt Ax tại N
a) Chứng minh OM vuông góc với AC
b) Chứng minh M là trung điểm của AN
c) Kẻ CH vuông góc AB,BM cắt CH ở K. Chứng minh K là trung điểm của CH