Kẻ OH vuông góc CD
Xét hình thang ABFE có
O là trung điểm của AB
OH//AE//BF
=>H là trung điểm của EF
=>HE=HF
ΔOCD cân tại O
mà OH là đường cao
nên H là trung điểm của CD
=>EC=DF
Kẻ OH vuông góc CD
Xét hình thang ABFE có
O là trung điểm của AB
OH//AE//BF
=>H là trung điểm của EF
=>HE=HF
ΔOCD cân tại O
mà OH là đường cao
nên H là trung điểm của CD
=>EC=DF
Cho nửa đường tròn (O), đường kính AB và một dây cung CD. Kẻ AE và BF vuông góc với CD lần lượt tại E và F. Chứng minh:
a, CE = DF
b, E và F đều ở ngoài (O)
Cho nửa đường tròn tâm O đường kính AB, dây CD có độ dài không đổi và khác AB. Gọi I là hình chiếu vuông góc của O trên CD; H,K theo thứ tự là hình chiếu vuông góc của A,B trên CD
a) Chứng minh I là trung điểm HK
b) Gọi E là hình chiếu vuông góc của I trên AB. Chứng minh rằng Sacb + Sadb = IE.AB
c) Tìm vị trí dây CD để diện tích AHKB lớn nhất
cứu mình với huuhhu
Cho nửa đường tròn tâm O, đường kính AB = 10 cm. Dây CD có hai điểm C và D thay đổi
trên đường tròn và độ dài không đổi bằng 8 cm. Gọi E và F lần lượt là hình chiếu vuông góc của A
và B trên CD.
a) Chứng minh
CE=BF .
b) Xác định vị trí của CD để diện tích tứ giác ABFE lớn nhất.
Cho đương tròn(O, R), dây AB cố định không đi qua tâm. C là điểm nằm trên cung nhỏ AB sao cho cung AC không lớn hơn cung BC. Kẻ dây CD vuông góc với AB tại H. Gọi điểm K là hình chiếu vuông góc của C trên đường thẳng DA.
a) Chứng minh: Bốn điểm A, H, C, K cùng thuộc một đường tròn.
b) Chứng minh: CD là tia phân giác của góc BCK
c) KH cắt BD tại E. Chứng minh: CE vuông góc BD
d) Khi điểm C di chuyển trên cung nhỏ AB. Xác định vị trí của điểm C để CK. AB + CE. DB có giá trị lớn nhất?
Cho đường tròn (O) với dây BC cố định (BC < 2R), điểm A trên cung lớn BC (A không trùng với B, C và A không là điểm chính giữa cung). Gọi H là hình chiếu vuông góc của A trên BC, E và F lần lượt là hình chiếu vuông góc của B và C trên đường kính AA'.
a) Chứng minh rằng tứ giác BHEA nội tiếp và HE AC
b) Chứng minh HE.AC = HF.AB
c) Khi A di động,chứng minh tâm đường tròn ngoài tiếp tam giác HEF cố định.
Cho đường tròn tâm O đường kính MN, dây cung AB vuông góc với MN tại điểm I nằm giữa O, N. Gọi K là một điểm thuộc dây AB nằm giữa A, I. Các tia MK, NK cắt đường tròn tâm O theo thứ tự tại C,D. Gọi E, F, H lần lượt là hình chiếu của C trên các đường thẳng AD, AB, BD. Chứng minh rằng:
1) F là trung điểm của EH
2) Hai đường thẳng DC và DI đối xứng nhau qua đường thẳng DN.
Giúp mình với, cảm ơn mn nhiều <3
Cho ( O ) đường kính AB, dây CD không cắt AB. Gọi E,F lần lượt là chân đường vuông góc kẻ từ A và B đến CD. Chứng minh CE=DF
Cho đường tròn tâm O ( không phải là đường kính). Điểm M di động trên cung lớn AB ( M không trùng A, B). Gọi H là hình chiếu của M lên AB. E, F lần lượt là hình chiếu của H trên MA, MB. Đường thẳng qua M vuông góc với EF cắt AB tại D.
a) Chứng minh rằng đường thẳng MD luôn đi qua một điểm cố định
b) Gọi Q, P lần lượt là hình chiếu của D lên MA, MB. Chứng minh DP.EF=PQ.HE
Cho đường tròn tâm O đường kính AB = 10cm. Điểm I nằm giữa A và O sao cho OI = IA. Vẽ dây cung CD vuông góc với Oa tại I. Gọi H là trung điểm của IC. Qua H vẽ đường thẳng vuông góc với CO cắt CO tại M và cắt (O) tại E; F. Chúng minh rằng AB là tiếp tuyến của (C; CE).
Cho đường tròn tâm O đường kính AB = 10cm. Điểm I nằm giữa A và O sao cho OI = IA. Vẽ dây cung CD vuông góc với Oa tại I. Gọi H là trung điểm của IC. Qua H vẽ đường thẳng vuông góc với CO cắt CO tại M và cắt (O) tại E; F. Chúng minh rằng AB là tiếp tuyến của (C; CE).