Cho đường tròn (O) với dây BC cố định (BC < 2R), điểm A trên cung lớn BC (A không trùng với B, C và A không là điểm chính giữa cung). Gọi H là hình chiếu vuông góc của A trên BC, E và F lần lượt là hình chiếu vuông góc của B và C trên đường kính AA'.
a) Chứng minh rằng tứ giác BHEA nội tiếp và HE AC
b) Chứng minh HE.AC = HF.AB
c) Khi A di động,chứng minh tâm đường tròn ngoài tiếp tam giác HEF cố định.