a: Thay x=0 vào (d'), ta được:
\(y=2\cdot0-1=0-1=-1\)
Thay x=0 và y=-1 vào (d), ta được:
\(0\cdot\left(m-2\right)+m+1=-1\)
=>m+1=-1
=>m=-2
b:
(d): y=(m-2)x+m+1
=>(m-2)x-y+m+1=0
Khoảng cách từ gốc O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)
=>\(\sqrt{\left(m-2\right)^2+1}=\left|m+1\right|\)
=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)
=>\(m^2-4m+4+1=m^2+2m+1\)
=>-4m+5=2m+1
=>-4m-2m=1-5
=>-6m=-4
=>\(m=\dfrac{2}{3}\)