c) Diện tích tam giác MAB là:
S MAB = 1/2 MB.AB = 1/2. 2 . 2 = 1 (đơn vị diện tích)
c) Diện tích tam giác MAB là:
S MAB = 1/2 MB.AB = 1/2. 2 . 2 = 1 (đơn vị diện tích)
Bài 1:Cho 2 đương thẳng 2x-y=-6vaf x+y=3.
a)Tìm toạ độ giao điểm M của 2 đường thẳng trên.
b)Gọi giao điểm của 2 đường thẳng trên với trục hoành theo thứ tự là Avà B. Tính diện tích tam giác MAB
hàm số y=2x+2 và y=-x+5 vẽ đồ thị d của hàm số 1 và d' của hàm số 2.tìm tọa độ điểm M của d và d' bằng phép tính.gọi A,B là giao điểm của d và d'.tính độ dài đoạn AM và số đo góc MAB và diện tích tam giác ABM
câu 2:cho 2 đường thẳng y=mx+n và -x+4 và điểm a (1;4) xác định m,n biết 2 đường thẳng đó đi qua A
Cho parabol (P): y=x2 và đường thẳng (d): y= -x+2
a) vẽ (p) và (d) trên hệ trục tọa độ Oxy
b) tìm tọa độ giao điểm A,B của (P) và (d)
c)tìm M trên cung AB của (P) sao cho diện tích tam giác MAB lớn nhất
Cho parabol (P): y=x2 và đường thẳng (d): y= -x+2
a) vẽ (p) và (d) trên hệ trục tọa độ Oxy
b) tìm tọa độ giao điểm A,B của (P) và (d)
c)tìm M trên cung AB của (P) sao cho diện tích tam giác MAB lớn nhất
hàm số y=2x+2 và y=-x+5 vẽ đồ thị d của hàm số 1 và d' của hàm số 2.tìm tọa độ điểm M của d và d' bằng phép tính.gọi A,B là giao điểm của d và d'.tính độ dài đoạn AM và số đo góc MAB và diện tích tam giác ABM
câu 2:cho 2 đường thẳng y=mx+n và -x+4 và điểm a (1;4) xác định m,n biết 2 đường thẳng đó đi qua A
Cho parabol (P): y = 1/4x^2 và đường thẳng (D) qua 2 điểm A và B trên (P) có hoành độ lần lượt là -2 và 4 a) Khảo sát sự biến thiên b) Viết phương trình của (D) c) Tìm điểm M trên cung AB của (P) (tương ứng hoành độ) x € [-2;4] sao cho tam giác MAB có diện tích lớn nhất
Cho (d1): y=x, (d2): y=0,5x. Đường thẳng (d) song song với trục Ox và cắt trục tung Oy tại điểm C có tung độ bằng 2. Đường thẳng (d) lần lượt cắt (d1) và (d2) tại D và E. Tính diện tích tam giác ODE
cho hàm số y = x2 có đồ thị là parabol P và đường thẳng d: y = x + 2
1. Cminh D cắt P tại 2 điểm phân biệt A, B
2. Tính diện tích tam giác OAB
Cho (O; R) và qua đường thẳng d không có điểm chung với đừng tròn. GỌi M là điẻm thuộc đường thẳng d. Qua M kẻ 2 tiếp truyến MA, MB với đường tròn. Hạ OH vuông góc với đường thẳng d tại H. Nối AB cắt OH tại K, cắt OM tại I. Tia OM cắt đường tròn (O; R) tại E.
a) Chứng minh: OK.OH = OI.OM
b) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB
c) TÌm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diện tích lớn nhất