Mặt cầu (S) tâm I ( 2 ; 3 ; - 1 ) cắt đường thẳng d : x - 11 2 = y 1 = z + 25 - 2 tại 2 điểm A, B sao cho A B = 16 có bán kính là:
A. R = 4
B. R = 15
C. R = 16
D. R = 17
Cho đường thẳng d : x + 5 2 = y - 7 - 2 = z 1 và điểm I ( 4 ; 1 ; 6 ) . Đường thẳng d cắt mặt cầu (S) có tâm I, tại hai điểm A, B sao cho A B = 6 . Phương trình của mặt cầu (S) là:
A. x - 4 2 + y - 1 2 + z - 6 2 = 18
B. x + 4 2 + y + 1 2 + z + 6 2 = 18
C. x - 4 2 + y - 1 2 + z - 6 2 = 9
D. x - 4 2 + y - 1 2 + z - 6 2 = 16
Trong không gian Oxyz cho đường thẳng d : x 2 = y 2 = z + 3 - 1 và mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi △ là đường thẳng đi qua A(2;1;3), vuông góc với đường thẳng d và cắt (S) tại hai điểm có khoảng cách lớn nhất. Khi đó đường thằng △ có một véctơ chỉ phương là u → = ( 1 ; a ; b ) . Tính
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian tọa độ Oxyz, cho điểm A(0;0;-2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt ∆ tại hai điểm B và C sao cho BC = 8 là:
A. x 2 + y 2 + z + 2 2 = 16
B. x 2 + y 2 + z + 2 2 = 25
C. x + 2 2 + y - 3 2 + ( z + 1 ) 2 = 16
D. x + 2 2 + y 2 + z 2 = 25
Trong không gian tọa độ Oxyz, cho điểm A (0;0;-2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt Δ tại hai điểm B và C sao cho BC = 8 là:
A. (S):x²+y²+ (z+2)²=16.
B. (S):x²+y²+ (z+2)²=25.
C. (S): (x+2)²+ (y-3)²+ (z+1)²=16.
D. (S): (x+2)²+y²+z²=25.
Trong không gian tọa độ Oxyz, cho điểm A (0; 0; -2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt Δ tại hai điểm B và C sao cho BC = 8 là:
A . S : x 2 + y 2 + z + 2 2 = 16
B . S : x 2 + y 2 + z + 2 2 = 25
C . S : x + 2 2 + y + 3 2 + z + 1 2 = 16
D . S : x + 2 2 + y 2 + z 2 = 25
Trong không gian Oxyz, cho điểm I(1;-2;3). Viết phương trình mặt cầu tâm I, cắt trục Ox tại 2 điểm A, B sao cho AB= 2 3
A. ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 16
B. ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 20
C. ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 25
D. ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 9
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 3 và hai đường thẳng d x : x - 2 1 = y 2 = z - 1 - 1 ; △ : x 1 = y 1 = z - 1 - 1 Phương trình nào dưới đây là phương trình mặt phẳng cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 1 và song song với d và △ .
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z - 2 và hai điểm A(2;1;0), B(-2;3;2). Viết phương trình mặt cầu đi qua A,B và có tâm I thuộc đường thẳng d.