Đáp án B
vậy phương trình mặt cầu cần tìm là
x 2 + y 2 + z + 2 2 = 25
Đáp án B
vậy phương trình mặt cầu cần tìm là
x 2 + y 2 + z + 2 2 = 25
Trong không gian tọa độ Oxyz, cho điểm A (0;0;-2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt Δ tại hai điểm B và C sao cho BC = 8 là:
A. (S):x²+y²+ (z+2)²=16.
B. (S):x²+y²+ (z+2)²=25.
C. (S): (x+2)²+ (y-3)²+ (z+1)²=16.
D. (S): (x+2)²+y²+z²=25.
Trong không gian tọa độ Oxyz, cho điểm A (0; 0; -2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt Δ tại hai điểm B và C sao cho BC = 8 là:
A . S : x 2 + y 2 + z + 2 2 = 16
B . S : x 2 + y 2 + z + 2 2 = 25
C . S : x + 2 2 + y + 3 2 + z + 1 2 = 16
D . S : x + 2 2 + y 2 + z 2 = 25
Trong không gian Oxyz, cho điểm E(2;1;3), mặt phẳng (P) đi qua ba điểm A ( 3 2 ; 0 ; 0 ) , B ( 0 ; 3 2 ; 0 ) , C ( 0 ; 0 ; - 3 ) , và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi ∆ là đường thẳng đi qua điểm E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình ∆ là
A. x = 2 + 9 t y = 1 + 9 t z = 3 + 8 t
B. x = 2 - 5 t y = 1 + 3 t z = 3
C. x = 2 + t y = 1 - t z = 3
D. x = 2 + 4 t y = 1 + 3 t z = 3 - 3 t
Trong không gian tọa độ oxyz, cho mặt cầu (S): (x-1)^2+(y-2)^2+(z+3)^2=6 và hai điểm B(2;3;-1) và C(0;1;-5). Điểm A thuộc mặt cầu (S) sao cho AB<AC. Tia phân giác trong của góc BAC cắt mặt cầu (S) tại K. Hình chiếu của A trên đường thẳng BC là điểm H(a;b;c). Biết AH/AK= căn 15/17, khi đó a+b+c bằng
Trong không gian tọa độ Oxyz, cho A(-3;3;-3) thuộc mặt phẳng ( α ) có phương trình 2x - 2y + z + 15 = 0 và mặt cầu (S): ( x - 2 ) 2 + ( y - 3 ) 2 + ( z - 5 ) 2 = 100 . Đường thẳng qua ∆ , nằm trên mặt phẳng ( α ) cắt (S) tại M, N. Để độ dài MN lớn nhất thì phương trình đường thẳng ∆ là
A. x + 3 1 = y - 3 4 = z + 3 6
B. x + 3 16 = y - 3 11 = z + 3 - 10
C. x = - 3 + 5 t y = 3 z = - 3 + 8 t
D. x - 1 3 = y - 3 - 1 = z + 3 3
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 48 Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C). Khối nón (N) có đỉnh là tâm của (S), đường tròn đáy là (C) cỏ thể tích lớn nhất bằng
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), B(0;0;b). Gọi (P) là mặt phẳng chứa d và d'; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng D thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d' lần lượt tại B, B'. Hai đường thẳng cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có véc tơ chỉ phương u → = ( 15 ; - 10 ; - 1 ) (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = -9
D. 6
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x - 1 2 + ( y - 2 ) 2 + z - 3 2 = 16 và các điểm A (1; 0; 2), B (-1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của (P) với mặt cầu (S) có diện tích nhỏ nhất.Khi viết phương trình (P) dưới dạng (P): ax + by + cz + 3 = 0. Tính T = a + b + c
A. 3
B. -3
C. 0
D. -2
Trong không gian tọa độ Oxyz, cho đường thẳng ∆ : x + 1 1 = y - 1 - 4 = z 1 . Mặt cầu (S) có tâm I(2;3;-1) và cắt đường thẳng ∆ tại 2 điểm A, B với AB=16. Bán kính của (S) là
A. 2 15
B. 2 19
C. 2 13
D. 2 17