Đáp án B
![]()
![]()

vậy phương trình mặt cầu cần tìm là
x 2 + y 2 + z + 2 2 = 25
Đáp án B
![]()
![]()

vậy phương trình mặt cầu cần tìm là
x 2 + y 2 + z + 2 2 = 25
Trong không gian tọa độ Oxyz, cho điểm A (0;0;-2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt Δ tại hai điểm B và C sao cho BC = 8 là:
A. (S):x²+y²+ (z+2)²=16.
B. (S):x²+y²+ (z+2)²=25.
C. (S): (x+2)²+ (y-3)²+ (z+1)²=16.
D. (S): (x+2)²+y²+z²=25.
Trong không gian tọa độ Oxyz, cho điểm A (0; 0; -2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt Δ tại hai điểm B và C sao cho BC = 8 là:
A . S : x 2 + y 2 + z + 2 2 = 16
B . S : x 2 + y 2 + z + 2 2 = 25
C . S : x + 2 2 + y + 3 2 + z + 1 2 = 16
D . S : x + 2 2 + y 2 + z 2 = 25
Trong không gian Oxyz, cho điểm E(2;1;3), mặt phẳng (P) đi qua ba điểm A ( 3 2 ; 0 ; 0 ) , B ( 0 ; 3 2 ; 0 ) , C ( 0 ; 0 ; - 3 ) , và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi ∆ là đường thẳng đi qua điểm E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình ∆ là
A. x = 2 + 9 t y = 1 + 9 t z = 3 + 8 t
B. x = 2 - 5 t y = 1 + 3 t z = 3
C. x = 2 + t y = 1 - t z = 3
D. x = 2 + 4 t y = 1 + 3 t z = 3 - 3 t
Trong không gian tọa độ oxyz, cho mặt cầu (S): (x-1)^2+(y-2)^2+(z+3)^2=6 và hai điểm B(2;3;-1) và C(0;1;-5). Điểm A thuộc mặt cầu (S) sao cho AB<AC. Tia phân giác trong của góc BAC cắt mặt cầu (S) tại K. Hình chiếu của A trên đường thẳng BC là điểm H(a;b;c). Biết AH/AK= căn 15/17, khi đó a+b+c bằng
Trong không gian tọa độ Oxyz, cho A(-3;3;-3) thuộc mặt phẳng ( α ) có phương trình 2x - 2y + z + 15 = 0 và mặt cầu (S): ( x - 2 ) 2 + ( y - 3 ) 2 + ( z - 5 ) 2 = 100 . Đường thẳng qua ∆ , nằm trên mặt phẳng ( α ) cắt (S) tại M, N. Để độ dài MN lớn nhất thì phương trình đường thẳng ∆ là
A. x + 3 1 = y - 3 4 = z + 3 6
B. x + 3 16 = y - 3 11 = z + 3 - 10
C. x = - 3 + 5 t y = 3 z = - 3 + 8 t
D. x - 1 3 = y - 3 - 1 = z + 3 3
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 48 Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C). Khối nón (N) có đỉnh là tâm của (S), đường tròn đáy là (C) cỏ thể tích lớn nhất bằng

![]()

![]()
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), B(0;0;b). Gọi (P) là mặt phẳng chứa d và d'; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng D thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d' lần lượt tại B, B'. Hai đường thẳng cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có véc tơ chỉ phương u → = ( 15 ; - 10 ; - 1 ) (tham khảo hình vẽ). Tính T= a+b

A. T = 8
B. T = 9
C. T = -9
D. 6
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x - 1 2 + ( y - 2 ) 2 + z - 3 2 = 16 và các điểm A (1; 0; 2), B (-1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của (P) với mặt cầu (S) có diện tích nhỏ nhất.Khi viết phương trình (P) dưới dạng (P): ax + by + cz + 3 = 0. Tính T = a + b + c
A. 3
B. -3
C. 0
D. -2
Trong không gian tọa độ Oxyz, cho đường thẳng ∆ : x + 1 1 = y - 1 - 4 = z 1 . Mặt cầu (S) có tâm I(2;3;-1) và cắt đường thẳng ∆ tại 2 điểm A, B với AB=16. Bán kính của (S) là
A. 2 15
B. 2 19
C. 2 13
D. 2 17