Trong không gian tọa độ Oxyz, cho điểm A(0;0;-2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt ∆ tại hai điểm B và C sao cho BC = 8 là:
A. x 2 + y 2 + z + 2 2 = 16
B. x 2 + y 2 + z + 2 2 = 25
C. x + 2 2 + y - 3 2 + ( z + 1 ) 2 = 16
D. x + 2 2 + y 2 + z 2 = 25
Trong không gian tọa độ Oxyz, cho điểm A (0; 0; -2) và đường thẳng ∆ : x + 2 2 = y - 2 3 = z + 3 2 . Phương trình mặt cầu tâm A, cắt Δ tại hai điểm B và C sao cho BC = 8 là:
A . S : x 2 + y 2 + z + 2 2 = 16
B . S : x 2 + y 2 + z + 2 2 = 25
C . S : x + 2 2 + y + 3 2 + z + 1 2 = 16
D . S : x + 2 2 + y 2 + z 2 = 25
Trong không gian Oxyz, cho điểm E(2;1;3), mặt phẳng (P) đi qua ba điểm A ( 3 2 ; 0 ; 0 ) , B ( 0 ; 3 2 ; 0 ) , C ( 0 ; 0 ; - 3 ) , và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi ∆ là đường thẳng đi qua điểm E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình ∆ là
A. x = 2 + 9 t y = 1 + 9 t z = 3 + 8 t
B. x = 2 - 5 t y = 1 + 3 t z = 3
C. x = 2 + t y = 1 - t z = 3
D. x = 2 + 4 t y = 1 + 3 t z = 3 - 3 t
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 25
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
A. I(1; -2; -3); R = 25
B. I(-1; 2; 3); R = 5
C. I(-1; 2; 3); R = 25
D. I(1; -2; -3); R = 5
Trong không gian với hệ tọa độ Oxyz cho hai điểm A(3;-2;6),B(0;1;0) và mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 . Mặt phẳng (P): ax+by+cz-2=0 đi qua A và B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T=a+b+c
A. T=3
B. T=5
C. T=2
D. T=4
Trong không gian tọa độ oxyz, cho mặt cầu (S): (x-1)^2+(y-2)^2+(z+3)^2=6 và hai điểm B(2;3;-1) và C(0;1;-5). Điểm A thuộc mặt cầu (S) sao cho AB<AC. Tia phân giác trong của góc BAC cắt mặt cầu (S) tại K. Hình chiếu của A trên đường thẳng BC là điểm H(a;b;c). Biết AH/AK= căn 15/17, khi đó a+b+c bằng
Trong không gian Oxyz cho điểm M(2;1;1) mặt phẳng α : x+y+z-4=0 và mặt cầu (S): x - 3 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng ∆ : x - 6 - 3 = y - 2 2 = z - 2 2 . Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:
A.x-2y+2z-1=0.
B.2x+2y+z-18=0.
C.2x-y-2z-10=0.
D.2x+y+2z-19=0.
Trong không gian Oxyz, cho điểm A ( 0 ; 1 ; 2 ) , mặt phẳng α : x - y + z - 4 = 0 và mặt cầu S : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x'Ox là: