a: AB vuông góc AC
=>BC là đường kính của (O)
=>B,O,C thẳng hàng
b:S ABC=1/2*AB*AC=1/2*AH*BC<=1/2*AO*BC=1/2*2R*R=R^2
a: AB vuông góc AC
=>BC là đường kính của (O)
=>B,O,C thẳng hàng
b:S ABC=1/2*AB*AC=1/2*AH*BC<=1/2*AO*BC=1/2*2R*R=R^2
Bài 2 : Cho ( O;R ) dây AB không qua tâm . Vẽ dây AC vuông góc với dây AB tại A , C thuộc ( O ) . Chứng minh : a, B , O , C thẳng hàng b, diện tích tâm giác ABC nhỏ hơn hoặc bằng R2
Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K.
a) Chứng minh tứ giác PDKI nội tiếp đường tròn.
b) Chứng minh CI.CP = CK.CD
c) Chứng minh IC là phân giác của góc ngoài ở đỉnh I của tam giác AIB.
d) Cho ba điểm A, B, C cố định. Đường tròn (O) thay đổi nhưng vẫn đi qua A và B. Chứng minh rằng IQ luôn đi qua một điểm cố định.
cho đường tròn tâm O có AB là dây cung cố định không đi qua tâm O. Từ M bất kì trên cung lớn AB kẻ dây cung MN vuông góc với AB tại H. Gọi MN là đường cao của tâm giác AMN ( Q thuộc AN) a. Chứng minh AMHQ nội tiếp b. Gọi I là giao điểm của AB và MQ. Chứng minh tam giác BQM cân c. Kẻ MP vuông góc BN tại P. Xác định vị trí M sao cho MQ. AN+ MP. BN đạt giá trị max
Bài 1 : Cho tam giác ABC nhọn nội tiếp ( O ; R ) , H là trực tâm tam giác ABC . Vẽ đường kính AD của ( O ; R ) . Chứng minh :
a, BH // DC
b, tứ giác BHCD là hình bình hành
c, Gọi giao điểm của BH và AC là E , góc BAC = 60* , góc ACB = 45* , AC = 5 cm . Tính diện tích tam giác ABC
Bài 2 : Cho ( O;R ) dây AB không qua tâm . Vẽ dây AC vuông góc với dây AB tại A , C thuộc ( O ) . Chứng minh :
a, B , O , C thẳng hàng
b, diện tích tâm giác ABC nhỏ hơn hoặc bằng R2
Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K.
a. Chứng minh tứ giác PDKI nội tiếp đường tròn.
b. Chứng minh CI.CP = CK.CD
c. Chứng minh IC là phân giác của góc ngoài ở đỉnh I của tam giác AIB.
d. Cho ba điểm A, B, C cố định. Đường tròn (O) thay đổi nhưng vẫn đi qua A và B. Chứng minh rằng IQ luôn đi qua một điểm cố định.
Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K.
a. Chứng minh tứ giác PDKI nội tiếp đường tròn.
b. Chứng minh CI.CP = CK.CD
c. Chứng minh IC là phân giác của góc ngoài ở đỉnh I của tam giác AIB.
d. Cho ba điểm A, B, C cố định. Đường tròn (O) thay đổi nhưng vẫn đi qua A và B. Chứng minh rằng IQ luôn đi qua một điểm cố định.
cho đường tròn ( O, R) có hai dây AB và CD vuông góc với nhau tại H ( AB và CD không đi qua tâm O, điểm C thuộc cung nhỏ AB). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CD tại M, vẽ CK vuông góc với AM tại K.Gọi N là giao điểm của AO và CD.
a) Chứng Minh AHCK là tứ giác nội tiếp.
b) Chứng minh HK song song với AD và MH.MN=MC.MD
c) Tính HA2+HB2+HC2+HD2 theo R
Cho đường tròn tâm O và dây BC không đi qua O. Điểm A chuyển động rên cung lớn . Vẽ đường tròn tâm I đi qua điểm B và tiếp xúc với AC tại A. Vẽ đường tròn tâm K đi qua điểm C và tiếp xúc với AB tại A.CMR:
a) 4 điểm B,D,O,C cùng thuộc 1 đường tròn.
b) Đường thẳng AD luôn đi qua 1 điểm cố định.
Cho đường tròn (O, R) đường kính AB và dây AC không qua tâm O. Gọi H là trung điểm của AC
a, Tính số đo góc A C B ^ và chứng minh OH//BC
b, Tiếp tuyên tại C của (O) cắt OH ở M. Chứng minh đường thẳng AM là tiếp tuyến của (O) tại A
c, Vẽ CK vuông góc AB tại K. Gọi I là trung điểm của CK và đặt C A B ^ = α. Chứng minh IK = Rsinα.cosα
d, Chứng minh ba điểm M, I, B thẳng hàng