cho đtròn (O) và điểm M nằm ngoài đtòn. Qua M kẻ tiếp tuyến MA của (O) ( A là tiếp điểm). Qua A kẻ đường thẳng song song với MO, đường thẳng này cắt (O) tại C ( C khác A). Đường thẳng MC cắt (O) tại B ( B khác C). OH⊥BC tại H
a. cm tg MAHO nt.
b. cm \(\dfrac{AB}{AC}=\dfrac{MA}{MC}\)
c. cm \(\widehat{BAH}=90^0\)
d. vẽ đkính AD của (O). cm \(\Delta ACH\sim\Delta DMO\)
a) Ta có: \(\angle MAO=\angle MHO=90\Rightarrow MAHO\) nội tiếp
b) Xét \(\Delta MAB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAB=\angle MCA\\\angle CMAchung\end{matrix}\right.\)
\(\Rightarrow\Delta MAB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{AB}{AC}=\dfrac{MA}{MC}\)
c) Vì MAHO nội tiếp \(\Rightarrow\angle BHA=\angle MOA\)
Ta có: \(\angle ABH=180-\angle MBA=180-\angle MAC=\angle AMO\) \((AC\parallel MO)\)
mà \(\angle MOA+\angle AMO=90\Rightarrow\angle BHA+\angle ABH=90\Rightarrow\angle BAH=90\)
d) MO cắt CD tại E
Vì \(OE\parallel AC\) mà \(AC\bot CD\left(\angle ACD=90\right)\Rightarrow OE\bot CD\)
mà \(OC=OD\Rightarrow OE\) là trung trực CD
mà \(M\in OE\Rightarrow\angle DMO=\angle CMO=\angle ACH\) \((MO\parallel AC)\)
Ta có: \(\angle DOM=180-\angle MOA=180-\angle MHA\left(MAHOnt\right)=\angle AHC\)
Xét \(\Delta AHC\) và \(\Delta DOM:\) Ta có: \(\left\{{}\begin{matrix}\angle DOM=\angle AHC\\\angle DMO=\angle ACH\end{matrix}\right.\)
\(\Rightarrow\Delta AHC\sim\Delta DOM\left(g-g\right)\)