a: Ta có: I nằm trên đường trung trực của AB
nen IA=IB
b: Xét ΔIME vuông tại M và ΔINE vuông tại N có
IE chung
góc MIE=góc NIE
Do đó: ΔIME=ΔINE
Suy ra: ME=NE
hay ΔEMN cân tại E
c: Ta có: IM=IN
EM=EN
Do đó: IE là đường trung trực của MN
a: Ta có: I nằm trên đường trung trực của AB
nen IA=IB
b: Xét ΔIME vuông tại M và ΔINE vuông tại N có
IE chung
góc MIE=góc NIE
Do đó: ΔIME=ΔINE
Suy ra: ME=NE
hay ΔEMN cân tại E
c: Ta có: IM=IN
EM=EN
Do đó: IE là đường trung trực của MN
Cho tam giác ABC, các tia phân giác góc B và C cắt nhau tại I. Gọi D và E lần lượt là hình chiếu của I trên AB và AC. Lấy M,N sao cho AB là đường trung trực của HM và AC là đường trung trực của HN. MN cắt AB và AC tại D,E. C/m:
a)Tam giác AMN cân
b)HA là p/giác của góc DHE
Mn vẽ hình giùm m luôn ik
Cho tam giác ABC có AB < AC. Trên các cạnh AB và AC lần lượt lấy các điểm M và N thay đổi sao cho BM = CN. Gọi K là trung điểm MC, kẻ đường thẳng đi qua trung điểm J của Bc và trung điểm I của MN cắt các đường thẳng AB và AC lần lượt ở D và E
a) CMR : Tam giác IJK và tam giác ADE cân
b) Chứng minh trung điểm I của MN luôn nằm trên một tia cố định
c) Chứng minh rằng trung trực của MN luôn đi qua một điểm cố định
Cho tam giác ABC cân tại A (góc A < 45 độ), lấy điểm M thuộc BC, từ M kẻ MH // AB. Điểm H thuộc AC. Kẻ MI // AC (I thuộc AB). Chứng minh:
a) Tam giác AIH = Tam giác MHI
b) AI = HC
c) Lấy N sao cho HI là trung trực của MN. CMR: IN = IB
d) Gọi giao điểm NH và AB là D. CMR: Chu vi tam giác ADH không phụ thuộc vào vị trí điểm M trên BC
Cho tam giác ABC ; AC > AB .Trên AB lấy điểm D; trên AC lấy điểm E sao cho BD = CE. Gọi M là trung điểm của BC ; N là trung điểm của DE; I là trung điểm của DC.
a) C/m tam giác MIN cân
b) MN cắt AB kéo dài tại P và cắt AC tại Q. C/m tam giác APQ cân.
c) Kẻ đường phân giác trong AK của A, Kthuộc BC . C/m MN//AK
Cho tam giác ABC cân tại A,M là trung điểm của BC. a) chứng minh: tam giác ABC = tâm giác ACM. b) trên tia đổi của tia MA lấy điểm D sao cho MD=MA. Chứng minh: CD//AB. c) gọi I là trung điểm của AC. Trên tia đổi của tia IB lấy điểm E sao cho IE=IB. Chứng minh: ba điểm D,C,E thẳng hàng và C là trung điểm của DE. Giúp mình
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
Cho tam giác ABC cân tại A (góc A < 45 độ), lấy điểm M thuộc BC, từ M kẻ MH // AB. Điểm H thuộc AC. Kẻ MI // AC (I thuộc AB).
Chứng minh:
a) Tam giác AIH = Tam giác MHI
b) AI = HC
c) Lấy N sao cho HI là trung trực của MN. CMR: IN = IB
d) Gọi giao điểm NH và AB là D. CMR: Chu vi tam giác ADH không phụ thuộc vào vị trí điểm M trên BC.
AC giải chính xác giúp e ạ
Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm M, trên cạnh AC kéo dài lấy điểm N sao cho CN=BM. Gọi H,K lầm lượt là hình chiếu của M,N trên BC,MN cắt BC tại I. Chứng minh:
a)MH=NK
b) I là trung điểm của MN.
c)Chứng minh khi M di chuyển trên AB thì đường trung trwucj của MN luôn đi qua 1 điểm cố định.
Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC
Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại M, từ E kẻ đường thẳng vuông góc với BC cắt AC ở N.
a. C/m MD=NE
b. MN cắt DE ở I.C/m I là trung điểm của DE
c. Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC