Cho đoạn thẳng AB và điểm C nằm giữa 2 điểm A và B người ta kẻ trên nửa mặt phẳng bờ AB 2 tia Ax , By vuông góc với AB. Trên tia Ax lấy điểm I . Tia vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính CI cắt IK tại P
a, C/M: AI.BK=AC.CB
b, C/M: Tam giác ABP vuông
c, Cho A, B ,I cố định. Xác định vị trí C sao cho diện tích ABKI lớn nhất
Cho nửa đường tròn đường kính AB và C là 1 điểm nằm giữa A và B. Trên nửa mặt phẳng có bờ AB chứa nửa đường tròn, vẽ 2 tia Ax và By tiếp xúc với nửa đường tròn đã cho. Trên tia Ax lấy điểm I ( với I khác A); đường thẳng vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại E.
a) C/m tứ giác CEKB nội tiếp
b) C/m AI*BK=AC*CB
c) C/m điểm E nằm trên nửa đường tròn đường kính AB
d) Cho các điểm A,B,I cố định. Hãy xác định vị trí điểm C sao cho \(S_{ABKI}\) lớn nhất
Cho điểm M cố định trên đoạn thẳng AB. Vẽ về 1 phía với AB : Ax và By cùng vuông góc với AB. Qua M có 2 đường thẳng thay đổi luôn luôn vuông góc với nhau và cắt Ax, By tại C và D.
a) C/m : ΔACM đồng dạng ΔBMD.
b) Cho \(\widehat{AMC}=\alpha;AM=a;BM=b.\) Tính diện tích ΔCMD theo α;a;b
c) Xác định vị trí của C và D để SΔMCD có GTNN.
Cho đường tròn (O) có đường kính AB cố định, M là 1 điểm thuộc đường tròn (M khác A,B). Các tiếp tuyến của (O) tai A và M cắt nhau tại C. Đường tròn (I) qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh
a, O,M,D thẳng hàng
b, Tam giác COD cân
c, Đường thẳng qua D và vuông góc với BC luôn đi qua 1 điểm cố định khi M di động trên (O)
cho đường tròn O, đường kính AB cố định. đường kính CD thay đổi. AC<AD cắt tiếp tuyến tại B lần lượt tại E, F. Tiếp tuyến tại C,D cắt EF tại I, K. M là tđ OB. cm IK vuông góc AK
Cho đường tròn tâm O đường kính AB. Từ 1 điểm M nằm trên nửa đường tròn vẽ tiếp tuyến xy. Vẽ AD và BC cùng vuông góc với xy.
C/m MC=MDC/m AD+BC có giá trị không đổi khi M di chuyển trên nửa đường tròn.C/m AD là tiếp tuyến của đường tròn đường kính CD.Xác định vị trí của M trên nửa đường tròn để diện tích tứ giác ABCD lớn nhất.BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho đường tròn tâm O đường kính AB. Kẻ tiếp tuyến Ax của (O) (A là tiếp điểm). Trên Ax lấy điểm I bất kỳ khác A, kẻ tiếp tuyến IC với (O)(A là tiếp điểm), BC cắt Ax tại D.A)
a) Chứng minh tứ giác OAIC nội tiếp và OI // DB
b) Gọi E là giao điểm của IB và (O), E khác B.
c) Kẻ đường cao AH của tam giác ABC, H thuộc BC, DE cắt(O) tại F. Chứng minh C, H, F thẳng hàng.
d) Gọi K là giao điểm của BI, CH. Chứng minh diện tích tam giác ABK bằng tổng diện tích tam giác AKC và BKC.