Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Cho đường tròn (O;R), đường kính AB. Lấy điểm C tùy ý trên cung AB sao cho AB < AC.
a) Chứng minh tam giác ABC vuông.
b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F. Qua C vẽ tiếp tuyến (d’) với đường tròn (O), (d’) cắt (d) tại D. Chứng minh : DA =DF.
c) Hạ CH vuông góc AB (H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm CH.
d) Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của (O) , suy ra OE // CA.
Giúp tôi giải câu b),c)
Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Cho đường tròn (O) có đường kính AB cố định, M là 1 điểm thuộc đường tròn (M khác A,B). Các tiếp tuyến của (O) tai A và M cắt nhau tại C. Đường tròn (I) qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh
a, O,M,D thẳng hàng
b, Tam giác COD cân
c, Đường thẳng qua D và vuông góc với BC luôn đi qua 1 điểm cố định khi M di động trên (O)
Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Bài 2: Từ điểm P nằm ngoài đường tròn tâm O bán kính R. Vẽ 2 tiếp tuyến PA, PB (A, B là các tiếp điểm). Gọi H là chân đường vuông góc kẻ từ A đến đường kính BC. Chứng minh rằng PC giao AH tại trung điểm I của AH
giúp mình vs mấy bạn
cho tam giác ABC cân tại A. Vẽ nửa đường tròn tâm D đường kính BC cắt AB, AC lần lượt tại E và F. Các dây BF,CE cắt nhau tại H.
a, Cho BC=10cm ; AB=13cm. Tính AD.
b. chứng minh bốn điểm A,E,H,F cùng nằm trên đường tròn. Xác định tâm O của đường tròn đó
c. chứng minh DE là tiếp tuyến của đường tròn tâm O
Cho (O,R) đường kính AB . Gọi C là điểm thuộc đường tròn (O) sao cho AC>BC
a, Chứng minh tam giác ABC vuông
b, Tiếp tuyến tại A và C của (O) cắt nhau tại D. Chứng minh OD vuông góc AC
c, Gọi H là giao điểm OD và AC . CHứng minh 4HO.HD= \(AC^2\)
d, Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC taik M
Chứng minh MB là tiếp tuyến của đường tròn (O)
Cho tam giác ABC vuông tại C, đường cao CH, O là trung điểm của AB. Đường thẳng vuông góc với CO tại C cắt AB tại D và cắt các tiếp tuyến Ax, By của (O;OC) lần lượt tại E,F.
a) Chứng minh EF là tiếp tuyến của (O;OC) từ đó suy ra AE + BF = EF
b) Khi AC = \(\frac{1}{2}AB\) = R, tính diện tích tam giác BDF theo R.
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?