Đáp án C
Với y ' = − 3 x − 1 2 , y 0 = 0 ⇒ x 0 = − 1 2
Phương trình tiếp tuyến cần tìm là:
y = − 4 3 x + 1 2 + 0 ⇔ 4 x + 3 y + 2 = 0
Đáp án C
Với y ' = − 3 x − 1 2 , y 0 = 0 ⇒ x 0 = − 1 2
Phương trình tiếp tuyến cần tìm là:
y = − 4 3 x + 1 2 + 0 ⇔ 4 x + 3 y + 2 = 0
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0
Cho hàm số y = x 2 - 2 x + 4 có đồ thị (C). Phương trình tiếp tuyến của (C) tại điểm có hoành độ x = 0 là
A. y = 4x + 3
B. y = 1 2 x + 2
C. y = - 1 2 x + 2
D. y = - 1 2 x - 2
Cho hàm số y = 1 3 x 3 + x 2 − 2 , có đồ thị (C). Phương trình tiếp tuyến của (C) tại điểm có hoành độ là nghiệm của phương trình y ' ' x = 0 là:
A. y = − x − 7 3
B. y = x − 7 3
C. y = − x + 7 3
D. y = 7 3 x
Cho hàm số y = x + 2 x + 1 có đồ thị (C). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị (C) với trục tung là
A. y = x – 2
B. y = –x + 2
C. y = –x + 1
D. y = –x –2
Cho hàm số y = f x = a x 3 + b x 2 + c x + d a , b , c ∈ ℝ , a ≠ 0 có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y = 4 tại điểm có hoành độ âm và đồ thị của hàm số y = f '(x) cho bởi hình vẽ dưới đây. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C) và trục hoành.
A. S = 9
B. S = 5 4
C. S = 21 4
D. S = 27 4
Cho hàm số f x = 3 2 x - 2 . 3 x có đồ thị như hình vẽ sau
Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Đường thẳng y = 0 cắt đồ thị hàm số (C) tại điểm có hoành độ là x = log 3 2
(2) Bất phương trình f x ≥ - 1 có nghiệm duy nhất.
(3) Bất phương trình f x ≥ 0 có tập nghiệm là - ∞ ; log 3 2
(4) Đường thẳng y = 0 cắt đồ thị hàm số (C) tại 2 điểm phân biệt.
A. 2
B. 4
C. 1
D. 3
Cho hàm số f x = 3 2 x − 2.3 x có đồ thị như hình vẽ sau
Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Đường thẳng y=0 cắt đồ thị hàm số (C) tại điểm có hoành độ là
x
=
log
3
2
(2) Bất phương trình
f
x
≥
−
1
có nghiệm duy nhất.
(3) Bất phương trình
f
x
≥
0
có tập nghiệm là
−
∞
;
log
3
2
(4) Đường thẳng y=0 cát đồ thị hàm số (C) tại 2 điểm phân biệt
A. 2.
B. 4.
C. 1.
D. 3.
Cho đồ thị C : y = x 3 - 3 x 2 + x + 1 . Tiếp tuyến của đồ thị (C) tại điểm M có hoành độ x = 0 cắt đồ thị (C) tại điểm N (khác M). Tìm tọa độ điểm N.
A. N(4;-3)
B. N(1;0)
C. N(3;4)
D. N(-1;-4)
Cho hàm số y = f (x) có đồ thị (C), biết tiếp tuyến của đồ thị (C) tại điểm có hoành độ
x = 0 là đường thẳng y = 3x - 3. Giá trị của lim x → 0 3 x f ( 3 x ) − 5 f ( 4 x ) + 4 f ( 7 x )
A. 1 10
B. 3 31
C. 3 25
D. 1 11