Ta có ME = MF => ΔEMF cân tại M
Ta có:
E M F ^ = 180 ° - C M A ^ - D M B ^ = 180 ° - 60 ° - 60 ° = 60 °
Từ đó MEF là tam giác cân có một góc bằng 60 ° nên nó là tam giác đều
Vậy EF = ME = MF = 2 a 3
Đáp án: A
Ta có ME = MF => ΔEMF cân tại M
Ta có:
E M F ^ = 180 ° - C M A ^ - D M B ^ = 180 ° - 60 ° - 60 ° = 60 °
Từ đó MEF là tam giác cân có một góc bằng 60 ° nên nó là tam giác đều
Vậy EF = ME = MF = 2 a 3
Đáp án: A
Cho điểm M thuộc đoạn thẳng AB sao cho MA = 2MB. Vẽ về một phía của AB các tam giác đều AMC và MBD. Gọi E là giao điểm của AD và MC, F là giao điểm của BC và DM. Đặt MB = a. Tính ME, MF theo a.
A. M E = a 2 ; M F = a 3
B. M E = M F = 2 a 3
C. M E = 2 a 3 ; M F = a 3
D. M E = M F = a 3
Cho điểm M thuộc đoạn thẳng AB. Vẽ về một phía của AB các tam giác đều AMC và MBD. Gọi E là giao điểm của AD và MC, F là giao điểm của BC và DM. Đặt MA = a, MB = b. Tính ME, MF theo a và b.
A. M E = a b b + a ; M F = a b + a
B. M E = M F = a b b + a
C. M E = b b + a ; M F = a b + a
D. M E = M F = a − b b + a
Cho điểm M thuộc đoạn thẳng AB. Vẽ về một phía của AB các tam giác đều AMC và MBD. Gọi E là giao điểm của AD và MC, F là giao điểm của BC và DM. Tam giác MEF là tam giác gì? Chọn đáp án đúng nhất?
A. Tam giác MEF đều
B. Tam giác MEF cân tại M
C. Tam giác MEF cân tại N
D. Cả A, B, C đều sai
cho M thuộc AB vẽ về 1 phía các tam giác đều AMC VÀ BMD E là giao điểm AD VÀ MC , F là giao điểm BC VÀ MD MA=a, MB=b. tính ME,MF THEO a,b
Cho tam giác ABC . Qua A vẽ đường thẳng xy//BC . Trên cạnh BC lấy điểm D vẽ DE//AB, DF//AC(E,F thuộc xy).Gọi M là giao điểm của AB và DF. Gọi N là giao của AC và DE. Gọi O là giao của AD và CF. Chứng minh rằng:
a) 3 điểm B , O, E thẳng hàng b) 3 điểm M, O , N thẳng hàng
cho hbh ABCD. GỌI M,N lần lượt là trung điểm của AB và CD . Gọi E là giao của AN và DM , F là giao điểm của MC và BN . C/M
a, AD=MN
b, tứ giác BCNM , MENF là hbh
c, E, F và trung điểm của MN thẳng hàng
Cho hình bình hành ABCD .Gọi M,N lần lượt là trung điểm của AB và CD .Gọi E là giao điểm của AN và DM ,F là giao điểm của MC và BN .Chứng minh
a, AD=MN
b, Tứ giác BCNM ,MENF là hình bình hành
c, E,F và trung điểm của MN thẳng hàng
Cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH và đường trung tuyến AD (H,D thuộc BC)
a) Tính độ dài đoạn thẳng BC, AD
b) Chứng minh AH2 = HB.HC
c) Qua A kẻ đương thẳng d vuông góc với AD, qua B kẻ đường thẳng d' vuông góc với BA. Gọi M là giao điểm của d và d', E là hình chiếu của B trên AM. Chứng minh góc ABE = góc BAD và tam giác ABC đồng dạng với tam giác EMB
d) Gọi N là giao điểm của AD và MB, F là giao điểm của DM và AB. Chứng minh E, F, N thẳng hàng.
Cho hình bình hành ABCD. Điểm E thuộc tia đối của AB, điểm F thuộc tia đối của CD sao cho AE=CF. Gọi M là giao điểm của AD và CE; N là giao điểm của AF và BC. Gọi O là giao điểm của MN và AC. Chứng minh: a) B, O, D thẳng hàng b) E, O, F thẳng hàng