ΔAHM vuông tạiH
=>AH<AM
ΔAHM vuông tại H
nên góc AMH<90 độ
=>góc AMN>90 độ
=>AM<AN
=>AH<AM<AN
ΔAHM vuông tạiH
=>AH<AM
ΔAHM vuông tại H
nên góc AMH<90 độ
=>góc AMN>90 độ
=>AM<AN
=>AH<AM<AN
Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ
BE AM ( E AM) ⊥
, từ C hạ
CF AN ( F AN) ⊥
Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/
BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ
BE d ( E d) ⊥
, từ C hạ
CF d ( F d) ⊥
. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥
và trên tia HM lấy điểm E sao cho HM = EM. Kẻ
HN AB ⊥
và trên tia
HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.
Cho tam giác abc có ba góc nhọn vẽ đoạn thẳng AD vuông góc với AB và AD = AB (D và C nằm về hai phía với đối với AB). Vẽ đoạn thẳng AE vuông góc AC, AE = AC ( E và B nằm về 2 phía đối với AC). Kẻ AH vuông góc với BC tại H. Kẻ DI và EK cùng vuông góc với đường thẳng AH (I và K thuộc đường thẳng AH).
Chứng minh rằng :
a) Tam giác ABH = Tam giác DAI.
b) DI = EK
c) Gọi M là giao điểm của DE và KI. Chứng minh rằng M là trung điểm của DE và KI.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC ( điểm H thuộc BC ). Lấy điểm D trên đường thẳng AH. Trên tia đối của tia HA, lấy điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh EB vuông góc với EF.
Cho tam giác ABC cân ở A có đường cao AH (H thuộc BC)
a, Chứng minh H là trung điểm của BC
b, Kẻ HM vuông góc với AB tại M, HN vuông góc vs AC tại N. Chứng minh tam giác AMN cân ở A
c, Vẽ điểm P sao cho điểm H là trung điểm của đoạn thẳng NP. Chứng minh Đường thẳng BC là đường trung trực của đoạn thẳng MP
d, MP cắt BC tại điểm K. NK cắt MH tại điểm D. Chứng minh Ba đường thẳng AH,MN,DP cùng đi qua 1 điểm
Cho tam giác ABC vuông tại A, đường cao AH (H e BC), kẻ HM vuông góc AC (M e AC) và trên tia HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc AB (N e AB), trên tia HN lấy điểm D sao cho NH=AH. Chứng minh rằng
a) AD=AE=AH
b) 3 điểm D,A,E thẳng hàng và tam giác DHE vuông
c) MN// DE
d) BD//CE
cho tam giác ABC vuông góc tại đỉnh A, AH vuông BC( H thuộc BC). Từ H kẻ HM vuông AC và trên tia HM lấy điểm E sao cho MH = EM, Kẻ HN vuông AB và trên tia HN lấy điểm D sao cho NH = DN,
1. Chứng minh ba điểm D, A, E thẳng hàng.
2. Chứng minh MN // DE,
3. Chứng minh BD || CE,
4. Chứng minh hệ thức AD = AE = AH.
Suy ra tam giác DHE là tam giác vuông,
cho tam giác ABC vuông góc tại đỉnh A, AH vuông BC( H thuộc BC). Từ H kẻ HM vuông AC và trên tia HM lấy điểm E sao cho MH = EM, Kẻ HN vuông AB và trên tia HN lấy điểm D sao cho NH = DN,
1. Chứng minh ba điểm D, A, E thẳng hàng.
2. Chứng minh MN // DE,
3. Chứng minh BD || CE,
4. Chứng minh hệ thức AD = AE = AH.
Suy ra tam giác DHE là tam giác vuông,
Cho tam giác ABC vuông tại đỉnh A, đường cao AH. Từ H kẻ HM vuông góc với AC (M thuộc AC) và trên tia HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc với AB (N thuộc AB) và trên tia HN lấy điểm D sao cho NH=DN
a) Cm D,A,E thẳng hàng
b) Cm MN//DE
c) Cm BD//CE
d) Cm AD=AE=AH. Suy ra tam giác DHE là tam giác vuông
Cho tam giác ABC cân tại A có đường cao AH (H thuộc BC)
a) Chứng minh: H là trung điểm BC và hai góc BAH và HAC bằng nhau
b) Kẻ HM vuống góc với AB tại M, HN vuông góc với AC tại N. Chứng minh: tam giác AMN cân tại A
c) Vẽ điểm P sao cho điểm H là trung điểm của đoạn NP. Chứng minh: Đường thẳng BC là trung trực của đoạn MP.
d) MP cắt BC tại điểm K. NK cắt MH tại điểm D. Chứng minh: Ba đường thẳng AH, MN, DP cùng đi qua một điểm