Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
=>\(\dfrac{AB}{HB}=\dfrac{AC}{HA}=\dfrac{BC}{BA}\)
=>\(BA^2=BH\cdot BC\)
Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC~ΔHAC
=>\(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
=>\(AC^2=BC\cdot HC\)
Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BH\cdot BC}+\dfrac{1}{CH\cdot BC}\)
\(=\dfrac{1}{BC}\left(\dfrac{1}{BH}+\dfrac{1}{CH}\right)\)
\(=\dfrac{1}{BC}\cdot\dfrac{BH+CH}{BH\cdot CH}=\dfrac{1}{AH^2}\)