a) Xét \(\Delta ADB,\Delta AEC\) có :
\(\widehat{ADB}=\widehat{AEC}\left(=90^o\right)\)
\(AB=AC\) (tam giác ABC cân tại A)
\(\widehat{A}:chung\)
=> \(\Delta ADB=\Delta AEC\) (cạnh huyền - góc nhọn)
=> AD = AE (2 cạnh tương ứng)
b) Xét \(\Delta ADE\) có :
AD = AE (cm câu a)
=> \(\Delta ADE\) cân tại A
Ta có : \(\widehat{AED}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị.
=> \(DE//BC\)
c) Xét \(\Delta AEI,\Delta ADI\) có :
AE = AD (\(\Delta AED\) cân tại A)
\(\widehat{AEI}=\widehat{ADI}\left(=90^o\right)\)
\(AI:Chung\)
=> \(\Delta AEI=\Delta ADI\left(c.g.c\right)\)
=> \(\widehat{EAI}=\widehat{DAI}\) (2 góc tương ứng)
=> AI là tia phân giác của góc A (3)
Xét \(\Delta ABM,\Delta ACM\) có :
AB = AC (tam giác ABC cân tại A)
\(AM:chung\)
BM = CM (M là trung điểm của BC)
=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
=> \(AM\) là tia phân giác của góc A (4)
Từ (3) và (4) => \(AI\equiv AM\)
=> A, I, M thẳng hàng.