b: Sửa đề: AD cắt BH tại E
Xét ΔABD vuông tại B và ΔAHE vuông tại H có
\(\widehat{BAD}=\widehat{HAE}\)(AD là phân giác của góc BAC)
Do đó: ΔABD~ΔAHE
=>\(\dfrac{AB}{AH}=\dfrac{AD}{AE}\)
=>\(AB\cdot AE=AD\cdot AH\)
b: Sửa đề: AD cắt BH tại E
Xét ΔABD vuông tại B và ΔAHE vuông tại H có
\(\widehat{BAD}=\widehat{HAE}\)(AD là phân giác của góc BAC)
Do đó: ΔABD~ΔAHE
=>\(\dfrac{AB}{AH}=\dfrac{AD}{AE}\)
=>\(AB\cdot AE=AD\cdot AH\)
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cn. Vẽ đường cao AH
a) tính BC
b) chứng minh rằng AB^2=BH*BC. Tính BH, HC
c) vẽ tia phân giác AD của góc A (D thuộc BC). Chứng minh rằng H nằm giữa B và D.
cho ΔABC cân tại A, có \(\widehat{BAC}\) nhọn . Qua A vẽ tia phân giác của \(\widehat{BAC}\)cắt cạnh BC tại D
a) chứng minh ΔABD=ΔACD
b)Vẽ đường trung tuyến CF của ΔABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của ΔABC
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân
d) chứng minh ba điểm B,G,E thẳng hàng và AD>BD
cho tam giác vuông tại B, vẽ đường phân giác AD (D thuộc BC ). Từ D kẻ DE vuông góc AC ( E thuộc AC )
a) Chứng minh: AD là đường trung trực của BE
b) Gọi F là giao điểm của tia DE và AB. Chứng minh tam giác ADF = Tam giác ADC
c) Chứng minh: BA + BC>DE+AC
Cho ΔABC vuông tại A. Vẽ AH⊥BC (H∈BC)
a,Chứng minh ΔHBA đồng dạng ΔABC
b,Có AB=9cm;AC=12cm. Tính BC,AH
c,Trên cạnh HC lấy điểm M sao cho HM=HA.Qua M vẽ đường thẳng vuông góc với BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc IMC tại A. Chứng minh rằng ba điểm H,I,K thẳng hàng
cho tam giác ABC vuông tại B, đường cao BH, có AB=3cm, BC=4cm
a, chứng minh tam giác HBA đồng dạng với tam giác BAC
b, tính AC, BH
c, kẻ tia phân giác AD (D thuộc BC). Tính DB, DC
d, từ D, kẻ DE vuông góc với AC (E thuộc AC). chứng minh AB.DE=AE.DB
Cho tam giác ABC (góc A=90). D thuộc BC sao cho BD=BA. Qua D kẻ đường thăng d vuông góc BC cắt tia đối của tia AB tại E. Chứng minh:
a)Tam giác BEC cân
b)ED cắt AC tại H. Chứng minh BH vuông góc EC
c)Tia Bx vuông góc BA, ED cắt Bx tại K
Chứng minh tam giác BHK cân.
= \(\dfrac{EA}{EC}\)
Cho tam giác ABC vuông tại A, có AB= 6cm; AC = 8cm, vẽ đường cao AH.
a, Tính AB
b, Chứng minh AB bình = BH nhân BC. Tính BH, HC
c, Vẽ phân giác AD của góc A(D thuộc BC). Chứng minh H nằm giữa B và D
Cho ∆ABC vuông tại A, có AB=20cm, AC=15cm. Về đường cao AH (H thuộc BC)
a. Chứng minh: ∆HBA~∆ABC
b. Tính BC, AH, BH
c. Tia phân giác góc BAC cắt AC tại D. Tính tỉ số diện tích của 2 tam giác ABD và ACF
d. Trong ∆ABC kẻ phân giác AD (D thuộc BC). Trong ∆ADB kẻ phân giác DE (E thuộc AB) và trong ∆ADC kẻ phân giác DF (F thuộc AC). Chứng minh rằng EA/EB×DB/DC×FC/FA=1
Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
a) Chứng minh tam giác ABK cân tại B
b) Chứng minh DK vuông góc BC
c) Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD. Chứng minh IK//AC
Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).
a) So sánh góc ABC và góc ACB. Tính góc ABH.
b) Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA
c) Tia BI cắt AC ở E. Chứng minh tam giác ABE đều
Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
a) Biết AC =8cm, AB=6cm. Tính BC?
b) Tam giác ABK là tam giác gì?
c) Chứng minh DK vuông góc BC
d) Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.
Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm
a) Tam giác ABC là tam giác gì
b) Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE
c) Chứng minh AE vuông góc BD
d) Kéo dài BA cắt ED tại F. Chứng minh AE//FC
Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.
a) Chứng minh tam giác ABH=tam giácACH
b) Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC
c) Cho AB=30cm, BH=18cm.Tính AH ,AG
d) Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .
Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm
a)Tính BC
b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM
c)Kẻ HI vuông góc BC tại I .So sánh HI và MK
d) So sánh BH+ BK với BC