a. AH⊥HC tại H, AH⊥HK tại H \(\Rightarrow\)K thuộc HC.
\(\widehat{BAH}=90^0-\widehat{CAH}=\widehat{PAE}\)
\(\Rightarrow\)△BAH=△PAE (g-c-g) \(\Rightarrow AB=AP\) nên △ABP cân tại A.
b. HI//PD (D∈BC) \(\Rightarrow\)PD⊥BC tại P.
-APQB hình bình hành, I là giao BP,AQ \(\Rightarrow\)I là t/đ BP.
\(\Rightarrow\)H là t/đ BD \(\Rightarrow BH=HD=EP\Rightarrow DK=PK\Rightarrow\)△DKP vuông cân tại K. \(\Rightarrow\widehat{PDK}=\widehat{EHK}=45^0\Rightarrow\)HE//DP
\(\Rightarrow\)H,I,E thẳng hàng.