a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
=>ΔABD=ΔACD
b: ΔABC cân tại A
mà AD là trung tuyến
nên AD vuông góc BC
d: DG là đường trung bình
=>DG//AC
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
=>ΔABD=ΔACD
b: ΔABC cân tại A
mà AD là trung tuyến
nên AD vuông góc BC
d: DG là đường trung bình
=>DG//AC
Cho ΔABC , AB=AC , phân giác AD .
a, Chứng minh : ΔABD=ΔACD
b, Vẽ trung tuyến CF , G là giao điểm CF và AD . Chứng minh G là trọng tâm ΔABC
c, Gọi H là trung điểm của CD . Đường thẳng \(\perp\)CD tại H cắt AC tại E . Chứng minh : ΔDEC cân
d, So sánh AD và BD
Bài 3: Cho tam giác vuông ABC tại A, và trung tuyến AM. Lấy điểm D sao choM là trung điểm của AD. a) Chứng minh: AD = BC ; BD = AC b) Biết AB = 6cm ; AC = 8cm. Tính BC, AD c) Từ D kẻ đường thẳng vuông góc với BC, cắt BC tại H. Trên đường thằng DH lấy E và F sao cho DE = DF = BC (D nằm giữa E và F ). Xác định dạng của tam giác AEF và tính EF d) CM: ABD = B C = DĈA = 90° e) AE cắt BD tại I (I nằm giữa B và D). Chứng minh tam giác BAI là tam giác vuông cân.
giúp mình với ạ
Cho tam giác ABC cân tại A. gọi D là trung điểm của BC. từ D kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (F thuộc AC). Chứng minh rằng :
a/ ΔABD = ΔACD
b/ AD ⊥ BC.
c/ ΔEBD =ΔFCD
d/ Cho AC = 10cm, BC = 12cm. tính AD.
Cho ΔABC vuông tại A (AB < AC). Trên tia đối của tia AB, lấy điểm D sao cho AB = AD.
a) Chứng minh ΔACB = ΔACD, từ đó suy ra ΔBCD cân
b) Gọi E, F lần lượt là trung điểm của CD và BC, BE cắt CA tại I. Chứng minh D, I, F thẳng hàng
c) Kẻ đường thẳng qua D, song song BC và cắt BE tại M. Gọi G là giao điểm của MA và CD. Chứng minh BC = 6GE
Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)
Cho ΔABC vuông tại A có AB = 6cm ; AC = 8cm ; BC = 10cm. Vẽ trung tuyến AM.
a) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh ΔAMB = ΔDMC
b) Chứng minh AC ┴ DC
c) Chứng minh AM < (AB+AC):2
Cho tam giác ABC cân tại A. gọi D là trung điểm của BC. từ D kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (E thuộc AC). Chứng minh rằng :
a/ ΔABD = ΔACD
b/ AD vuông góc với BC.
c/ tam giác EBD = tam giác FCD
d/ Cho AC = 10cm, BC = 12cm. tính AD.
Cho ΔABC cân tại A, với đường trung tuyến AI: a, Chứng minh ΔABI = ΔACI b, Chứng minh AI vuông góc với BC c, Kẻ đường trung tuyến BM. Biết AC = 8 cm. Tính IM d, Chứng minh IM // AB Chỉ cần câu c và d
Mik cần gấp giúp vs !
cho ΔABC cân tại A, có ^BAc nhọn . Qua A vẽ tia phân giác của ^BACcắt cạnh BC tại D
a) chứng minh ΔABD=ΔACD
b)Vẽ đường trung tuyến CF của ΔABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của ΔABC
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân
d) chứng minh ba điểm B,G,E thẳng hàng và AD>BD
Helps Me !!!