Đặt P(x) dưới dạng P(x)=(x-a).A(x)+(Hằng số), biết
a) P(x)=\(2x^3+3x^2-1;a=-1 \)
1. Cho đa thức \(f\left(x\right)=x^3-3x^2+9x+1964\). Chứng minh rằng tồn tại số nguyên \(a\) sao cho \(f\left(a\right)⋮3^{2014}\)
2. Chứng minh rằng với mọi \(a\inℤ\), phương trình \(x^4-2007x^3+\left(2006+a\right)x^2-2005x+a=0\) không thể có 2 nghiệm nguyên phân biệt.
3. Tìm tất cả các số nguyên dương \(n\) sao cho \(2^n-1|3^n-1\)
tìm các giá trị của m để hàm số sau
a) \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\) nghịch biến trên R
b) \(y=-\dfrac{1}{3}x^3-\dfrac{1}{2}mx^2+x+20\) nghịch biến trên R
a) tính gtrị của biểu thức A = \(\sqrt{3}+\sqrt{12}-\sqrt{27}-\sqrt{36}\)
b) cho bt B = \(\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x-5}}{\sqrt{x\left(\sqrt{x-1}\right)}}\) với x > 0 và x \(\ne\) 1 . rút gọn bt và tìm x để B = 2
tính giới hạn
a) \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)
b) \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)
c) \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)
Cho f(x) là hàm đa thức thỏa \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}=a\left(a\in R\right)\) và tồn tại \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=T\left(T\in R\right).\) Tìm T theo a.
giải các phương trình sau : a). sin 2x+sin2 x=1/2
b.2sin2 x +3 sin x cosx + cos2 x= 0
c.sin2 x/2 + sin x - 2 cos 2 x/2 = 1/2
Đa thức P(x) = \(243^5-405^4+270^3-90^2+15x-1\) là khai triển của nhị thức nào dưới đây ?
A. \(\left(1-3x\right)^5\)
B. \(\left(1+3x\right)^5\)
C. \(\left(x-1\right)^5\)
D.\(\left(3x-1\right)^5\)
giải chi tiết giúp em luôn nhé
Cho f(x) =2x-1/x+3 a. Viết phương trình tổng quát biết tiếp tuyến vuông góc:y = 7x+3 b. Viết phát biết TT //:y =-1/2 x+2