Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cíuuuuuuuuuu

Cho đa thức: f(x)=x4-3x2+2x-7 và g(x)=x+2
a) Thực hiện phép chia f(x) : g(x)
b) Tìm số nguyên x để f(x) chia hết cho g(x)
c) Tìm m để đa thức k(X)= -2x3+x-m chia hết cho g(x)

Akai Haruma
15 tháng 9 2021 lúc 9:44

Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$

$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$

Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$

b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$

Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$

$\Leftrightarrow x+2$ là ước của $7$

$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$

$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$

c.

Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$

$\Leftrightarrow -2(-2)^3+(-2)-m=0$

$\Leftrightarrow 14-m=0$

$\Leftrightarrow m=14$


Các câu hỏi tương tự
Cíu iem
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
Trần Phương nam
Xem chi tiết
Cíuuuuuuuuuu
Xem chi tiết
Cíuuuuuuuuuu
Xem chi tiết
Cíuuuuuuuuuu
Xem chi tiết
Đào Việt Phương
Xem chi tiết
Vy trần
Xem chi tiết
Hơi khó
Xem chi tiết