a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
Cho ▲ABC, M là trung điểm của AC. Trên tia BM lấy điểm D sao cho M là trung điểm của BD.
a) Chứng minh : ▲ABM = ▲CDM.
b) Chứng minh : AB // CD.
c) Vẽ AH ┴ BC, DK ┴ BC ( H, K ∈ BC ). Chứng minh : BH = CK.
Giúp mik vs ạ Tuần sau mik nộp mất rồi ạ. Nhờ các bạn cao nhân giúp e vs
Bài 3. (3,0 điểm) Cho tam giác ABC, lấy M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh AMB = DMC;
b) Chứng minh AC // BD;
c) Kẻ AH ⊥ BC, DK ⊥ BC (H, K thuộc BC). Chứng minh BK = CH;
d) Gọi I là trung điểm của AC, vẽ điểm E sao cho I là trung điểm của BE. Chứng minh C là trung điểm của DE.
Cho ΔABC có cạnh AB = AC, M là trung điểm của BC.
a) Chứng minh Δ ABM = Δ ACM.
b) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh AC = BD.
c) Chứng minh AB // CD
d) Trên nửa mặt phẳng bờ là AC không chứa điểm B, vẽ tia Ax // BC lấy điểm I∈ Ax sao cho AI = BC. Chứng minh 3 điểm D, C, I thẳng hàng.
3: (5,0 điểm): Cho tam giác ABC cân tại A . Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy điểm N sao cho BM = CN.
a) Chứng minh : Δ ABM = Δ ACN
b) Kẻ BH ⊥ AM ; CK ⊥ AN ( H ∈ AM; K ∈ AN ) . Chứng minh : AH = AK
c) Gọi O là giao
Cho ΔABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM
lấy điểm N sao cho M là trung điểm của AN.
a) Chứng minh rằng: Δ AMB = ΔNMC
b) Vẽ CD AB (D AB). Tính góc DCN.
c) Vẽ AH BC (H BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Chứng minh : BI = CN
Bài 5 (3,5 điểm) : Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = AM.
a) Chứng minh: Δ ABM = Δ ECM
b) Chứng minh: AB = CE và AB // CE
c) Chứng minh: AC // BE
d) Trên đoạn thẳng AB lấy điểm I, trên đoạn thẳng CE lấy điểm K sao cho AI = EK. Chứng minh: 3 điểm I, M, K thẳng hàng
Cho 𝛥 ABC có 3 góc nhọn (AB < AC), M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho BM = MD.
a) Chứng minh 𝛥 ABM = 𝛥 CDM
b) Chứng minh AB // CD.
c) Vẽ AH, CK vuông góc với BD (K, H thuộc BD). Chứng minh BH = DK
Cho tam giác ABC ( AB< AC ). Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh : a) Δ AIB = Δ CID. b) AD = BC và AD // BC. c) Gọi E là trung điểm của AB. Trên tia đối của tia EC lấy điểm K sao cho: EC = EK. Chứng minh: D, A, K thẳng hàng.
cho Δ abc vuông tại A . TIa phân giác góc ABC cắt AC tại D .Vẽ DE vuông góc bc tại E
a, chứng minh Δ adb=Δ edb; ad=de
b,chứng minh AD<BC
c, góc abe cắt bd tại f. chứng minh cf là trung tuyến Δ ace
d, đt vuônggóc bc tại b cắt ca tại m . gọ I là điểm bất kì thuộc ab. trên tia đối be lấy điểm j sao cho AJ=bi, đt vuông gócAB tại I cắt BM tại P . Chứng minh PJ vuông góc JC