Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kim taehyung

cho các số thực x,y,z khác 0 thỏa mãn:

x/2023x+y+z+t = y/x+2023y+z+t = z/x+y+2023z+t = t/x+y+z+2023t 

chứng minh rằng biểu thức:

P =(1+ x+y/z+t)^2023 + (1 + y+z/t+x)^2023 + (1 + t+x/y+z)^2023 + (1 + t+x/y+z)^2023 

có giá trị nguyên

 

Nguyễn Việt Lâm
14 tháng 1 2024 lúc 18:18

TH1: \(x+y+z+t=0\)

\(P=\left(1+\dfrac{x+y}{z+t}\right)^{2023}+\left(1+\dfrac{y+z}{x+t}\right)^{2023}+\left(1+\dfrac{z+t}{x+y}\right)^{2023}+\left(1+\dfrac{t+x}{y+z}\right)^{2023}\)

\(=\left(\dfrac{x+y+z+t}{z+t}\right)^{2023}+\left(\dfrac{x+y+z+t}{x+t}\right)^{2023}+\left(\dfrac{x+y+z+t}{x+y}\right)^{2023}+\left(\dfrac{x+y+z+t}{y+z}\right)^{2023}\)

\(=0+0+0+0=0\) là số nguyên (thỏa mãn)

TH2: \(x+y+z+t\ne0\), áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2023x+y+z+t}=\dfrac{y}{x+2023y+z+t}=\dfrac{z}{x+y+2023z+t}+\dfrac{t}{x+y+z+2023t}\)

\(=\dfrac{x+y+z+t}{\left(2023x+y+z+t\right)+\left(x+2023y+z+t\right)+\left(x+y+2023z+t\right)+\left(x+y+z+2023t\right)}\)

\(=\dfrac{x+y+z+t}{2026\left(x+y+z+t\right)}=\dfrac{1}{2026}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2023x+y+z+t}=\dfrac{1}{2026}\\\dfrac{y}{x+2023y+z+t}=\dfrac{1}{2026}\\\dfrac{z}{x+y+2023z+t}=\dfrac{1}{2026}\\\dfrac{t}{x+y+z+2023t}=\dfrac{1}{2026}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2026x=2023x+y+z+t\\2026y=x+2023y+z+t\\2026z=x+y+2023z+t\\2026t=x+y+z+2023t\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4x=x+y+z+t\\4y=x+y+z+t\\4z=x+y+z+t\\4t=x+y+z+t\end{matrix}\right.\)

\(\Rightarrow4x=4y=4z=4t\) (vì đều bằng \(x+y+z+t\))

\(\Rightarrow x=y=z=t\)

Do đó:

\(P=\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}\)

\(=2^{2023}+2^{2023}+2^{2023}+2^{2023}\)

\(=4.2^{2023}=2^{2025}\in Z\)

Nguyễn Việt Lâm
14 tháng 1 2024 lúc 17:05

Em kiểm tra lại đề, 2 ngoặc cuối bị giống nhau, chắc em ghi nhầm


Các câu hỏi tương tự
kim taehyung
Xem chi tiết
Bazo Chou
Xem chi tiết
nguyễn nhật huyền phương
Xem chi tiết
Nguyễn Minh Chiến
Xem chi tiết
Nga Phạm
Xem chi tiết
hoàng đá thủ
Xem chi tiết
Vũ Đăng Dũng
Xem chi tiết
Trịnh Đức Việt
Xem chi tiết
phạm hồng hạnh
Xem chi tiết