Cho x,y là số thực thỏa mãn điều kiện x+y=1.Tìm giá trị nhỏ nhất của A= x^3+y^3
cho các số thực x và y thỏa mãn điều kiện x^2 + y^2 = 2 Tìm giá trị nhỏ nhất của biểu thức P = 3(x+y)+xy
Cho các số thực x,y thỏa mãn điều kiện:
\(\sqrt{x^2+11}+\sqrt{x-2018}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
Tính giá trị của biểu thức: \(M=x^{11}-y^{2018}\)
Cho hai số thực c,y khác 0 thay đổi thỏa mãn điều kiện (x+y)xy=x2+y2-xy
Tính giá trị lớn nhất chủa biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\)
Cho các số thực x;y thỏa mãn điều kiện : \(x^2+\sqrt{x-2}=y^2+\sqrt{y-2}\)
Giá trị của biểu thức \(P=\frac{x^3-y^3}{x+y}\)
\(\text{cho x,y,z là các số thực khác 0 và thỏa mãn điều kiện xy+yz+zx=0. Tính giá trị của biểu thức A= }\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}\)
Cho x , y ,z là các số thực thỏa mãn điều kiện : \(\frac{3}{2}x^2+y^2+z^2+yz=1\) 1 . Tìm giá trị lớn nhất của biểu thức A = x + y + z là :
Cho x, y là các số thực dương thỏa mãn điều kiện: \(x^3+y^3+6xy\le8\)
Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2}+\frac{3}{xy}+xy\)
cho 3 số thực x,y,z khác 0 thỏa mãn điều kiện: x2+x=y2; y2+y=z2; z2+z=x2
tìm giá trị của A=x+y+z và B=(x-y)(y-z)(z-x)
MK CẦN GẤP THANKS!!