cho các số x,y thỏa mãn \(x^3+y^3-6xy=-11\).chứng minh rằng \(\frac{-7}{3}< x+y< -2\)
Cho x,y thoả mãn điều kiện \(x^3+y^3-6xy=-11\). Chứng minh rằng \(\dfrac{-7}{3}< x+y< -2\)
cho các số thực x,y thỏa mãn x^3+y^3-6xy+11=0 giá trị P = x+y thỏa mãn điều kiện nào dưới đây
a. x+y < -3
b. x+y > -3/2
c. x+y > 1/5
d. x+y < -2
. Cho các số thực x,y thỏa mãn 0<x<1, 0<y<1 Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}\)
Cho x, y là các số thực thỏa mãn 0<x, y<1.
Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}.\)
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
Cho x,y là các số thực không âm thỏa mãn x,y\(\le\)1
chứng minh rằng:\(\frac{x+y}{2}\le\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\le1\)
Cho các số thực dương x,y,z thỏa mãn xy+yz+zx>=x+y+z
Chứng minh rằng \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge1\)
Cho các số thực dương x,y,z thỏa mãn : \(x^2+y^2+z^2=\frac{3}{7}\)
Chứng minh rằng : \(\sqrt{8+14x}+\sqrt{8+14y}+\sqrt{8+14z}\le3+3\sqrt{7}\)