Áp dụng BĐT Cauchy-Schwarz ta có:
\(T=\frac{1}{xy}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{xy+xz}=\frac{4}{xy+xz}\)
Từ \(x+y+z=3\Rightarrow y+z=4-x\)
\(\Rightarrow T\ge\frac{4}{xy+xz}=\frac{4}{x\left(y+z\right)}=\frac{4}{x\left(4-x\right)}=\frac{4}{-x^2+4x}\)
Lại có: \(-x^2+4x=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\le4\)
\(\Rightarrow T\ge\frac{4}{-x^2+4x}\ge\frac{4}{4}=1\)
Đẳng thức xảy ra khi \(x=2;y=z=1\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=1\).