Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Chí Cường

Cho các số thực dương x,y,z thỏa mãn: xy+yz+zx=3. Tìm GTNN của:

\(P=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{z+3y}\)

Thắng Nguyễn
28 tháng 11 2016 lúc 21:27

Áp dụng BĐT AM-GM ta có:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Cộng theo vế ta có:

\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)

Dấu "=" khi x=y=z=1

Phú Lê Hoàng
28 tháng 11 2016 lúc 21:53

xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy

Lê Chí Cường
28 tháng 11 2016 lúc 22:07

Áp dụng bất đẳng thức AM-GM, ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

<=>\(a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

<=>\(\left(a+b+c\right)^2\ge9\)

<=>\(a+b+c\ge3\)