Ta có: \(8\le xy+x+y\le\frac{\left(x+y\right)^2}{4}+x+y\)
Từ đó suy ra \(a+b\ge4\Rightarrow16\le\left(a+b\right)^2\le2\left(a^2+b^2\right)=2P\Rightarrow P\ge8\)
Vậy..
P/s: chắc là vậy đó!
bui thai hoc: Nếu sai chỗ nào xin sửa giúp em luôn ạ!
Ta có: \(8\le xy+x+y\le\frac{\left(x+y\right)^2}{4}+x+y\)
Từ đó suy ra \(a+b\ge4\Rightarrow16\le\left(a+b\right)^2\le2\left(a^2+b^2\right)=2P\Rightarrow P\ge8\)
Vậy..
P/s: chắc là vậy đó!
bui thai hoc: Nếu sai chỗ nào xin sửa giúp em luôn ạ!
Cho x,y là các số thực dương thoả mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\)
cho x, y là các số thực dương thoả mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3^{ }}=\frac{1}{xy}\)
Cho x , y là các số thực dương thỏa mãn x + y + xy = 8 . Tìm giá trị nhỏ nhất của biểu thức A = x2 + y2
cho các số thực dương x, y thỏa mãn x+xy+y =8 tìm giá trị nhỏ nhất của biểu thức \(x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
cho các số dương x và y thoả mãn \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\) .Tìm giá trị nhỏ nhất của biểu thức A=xy+2017
cho x, y là các số thực nguyên thoả mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức B= 1/(x^3+y^3) +1/xy
cho x, y là các số thực dương thỏa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức A=x^3/(1+y)+y^3/(1+x)
Cho các số thực dương x , y thỏa mãn xy ≤ y − 1 , tìm giá trị nhỏ nhất của G = (x^2 + y^2)/xy .
Cho các số thực dương x , y thỏa mãn xy ≤ y − 1 , tìm giá trị nhỏ nhất của G = (x^2 + y^2)/xy .