Đặt \(K=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
\(\Rightarrow2K=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}=\)\(2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}\)\(+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)\(\le a\left[\left(b+1\right)+\left(b^2-b+1\right)\right]+b\left[\left(c+1\right)+\left(c^2-c+1\right)\right]\)\(+c\left[\left(a+1\right)+\left(a^2-a+1\right)\right]\)(Theo BĐT AM - GM)
\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)\)\(=ab^2+bc^2+ca^2+6\)
Đặt \(M=ab^2+bc^2+ca^2\)
Không mất tính tổng quát, giả sử \(a\ge c\ge b\)thì ta có \(b\left(a-c\right)\left(c-b\right)\ge0\Leftrightarrow abc+b^2c\ge ab^2+bc^2\)
\(\Leftrightarrow ab^2+bc^2+ca^2\le abc+b^2c+ca^2\)
hay \(M\le abc+b^2c+ca^2\le2abc+b^2c+ca^2=c\left(a+b\right)^2\)\(=4c.\frac{a+b}{2}.\frac{a+b}{2}\le\frac{4}{27}\left(c+\frac{a+b}{2}+\frac{a+b}{2}\right)^3\)\(=\frac{4\left(a+b+c\right)^3}{27}=4\)
\(\Rightarrow2K\le10\Rightarrow K\le10\)
Vậy \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)=\left(2,0,1\right)\)
Kiệt cop sai đáp án rồi kìa :))
Đoạn cuối không giả sử \(a\ge c\ge b\) được đâu nhá
Mà phải giả sử b là số nằm giữa a và c
Khi đó:
\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)
\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2=b\left(a^2+ac+c^2\right)\)
\(\le b\left(a^2+2ac+c^2\right)=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta chứng minh \(b\left(3-b\right)^2\le4\Leftrightarrow\left(b-1\right)^2\left(b-4\right)\le0\) *đúng *
Vậy ............................