Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thiên An

Cho các số thực dương a, b, c. Chứng minh rằng

\(\frac{a^2+bc}{b+c}+\frac{b^2+ca}{c+a}+\frac{c^2+ab}{a+b}\ge a+b+c\)

Thắng Nguyễn
22 tháng 3 2017 lúc 21:53

Let \(D=\left(a+b\right)\left(b+c\right)\left(c+a\right)\). Clearly \(D>0\). We show that the difference between the left-hand side and the right-hand of the inequality is non-negative 

\(\frac{a^2+bc}{b+c}-a+\frac{b^2+ca}{c+a}-b+\frac{c^2+ab}{a+b}-c\)

\(=\frac{a^2+bc-ab-ac}{b+c}+\frac{b^2+ac-ab-bc}{a+c}+\frac{c^2+ab-ac-bc}{a+b}\)

\(=\frac{\left(a-b\right)\left(a-c\right)}{b+c}+\frac{\left(b-a\right)\left(b-c\right)}{a+c}+\frac{\left(c-a\right)\left(c-b\right)}{a+b}\)

\(=\frac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{D}\)

\(=\frac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{D}\)

\(=\frac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2D}\ge0\)

Equality holds if and only if \(a=b=c\)

Done !

Chibi
22 tháng 3 2017 lúc 22:24

Mỗi lần thấy bất đẳng thức kiểu này là mình mù đường không biết nên đi hướng nào luôn. Mình triển khai theo Cauchy nó ra loạn xạ luôn. hihi


Các câu hỏi tương tự
Đỗ Đức Đạt
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
Đàm Công Tuấn
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Tiểu Qủy
Xem chi tiết
Luân Đặng
Xem chi tiết
Phạm Thị Thu Uyên
Xem chi tiết
Nguyễn Minh Tuyền
Xem chi tiết
Trịnh Quỳnh Nhi
Xem chi tiết